These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 20549622)

  • 21. Determining cadmium critical concentrations in natural soils by assessing Collembola mortality, reproduction and growth.
    Bur T; Probst A; Bianco A; Gandois L; Crouau Y
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):415-22. PubMed ID: 19913911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyst-based toxicity tests XV--application of ostracod solid-phase microbiotest for toxicity monitoring of contaminated soils.
    Chial B; Persoone G
    Environ Toxicol; 2003 Oct; 18(5):347-52. PubMed ID: 14502588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of EPA's 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas.
    Bojes HK; Pope PG
    Regul Toxicol Pharmacol; 2007 Apr; 47(3):288-95. PubMed ID: 17291653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment.
    Kammenga JE; Dallinger R; Donker MH; Köhler HR; Simonsen V; Triebskorn R; Weeks JM
    Rev Environ Contam Toxicol; 2000; 164():93-147. PubMed ID: 12587835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of heavy metal contamination on the soil arthropod community of a shooting range.
    Migliorini M; Pigino G; Bianchi N; Bernini F; Leonzio C
    Environ Pollut; 2004 May; 129(2):331-40. PubMed ID: 14987819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does lipophilicity of toxic compounds determine effects on drought tolerance of the soil collembolan Folsomia candida?
    Skovlund G; Damgaard C; Bayley M; Holmstrup M
    Environ Pollut; 2006 Dec; 144(3):808-15. PubMed ID: 16584822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of bioassays as indicators of petroleum-contaminated soil remediation.
    Płaza G; Nałecz-Jawecki G; Ulfig K; Brigmon RL
    Chemosphere; 2005 Apr; 59(2):289-96. PubMed ID: 15722101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the ecotoxic potential of soil contaminants by using a soil-algae test.
    Hammel W; Steubing L; Debus R
    Ecotoxicol Environ Saf; 1998; 40(1-2):173-6. PubMed ID: 9626553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of zinc exposure on earthworms, Lumbricus terrestris, in an artificial soil.
    Lev SM; Matthies N; Snodgrass JW; Casey RE; Ownby DR
    Bull Environ Contam Toxicol; 2010 Jun; 84(6):687-91. PubMed ID: 20431863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A rapid microbiotest for determination of soil toxicity to higher plants.
    Persoone G
    Commun Agric Appl Biol Sci; 2007; 72(2):97. PubMed ID: 18399429
    [No Abstract]   [Full Text] [Related]  

  • 31. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicity of profenofos to the springtail, Folsomia candida, and ammonia-oxidizers in two agricultural soils.
    Liu YR; Zheng YM; He JZ
    Ecotoxicology; 2012 May; 21(4):1126-34. PubMed ID: 22362510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.
    Molina-Barahona L; Vega-Loyo L; Guerrero M; Ramírez S; Romero I; Vega-Jarquín C; Albores A
    Environ Toxicol; 2005 Feb; 20(1):100-9. PubMed ID: 15712321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixture effects of nickel and chlorpyrifos on Folsomia candida (Collembola) explained from development of toxicity in time.
    Broerse M; van Gestel CA
    Chemosphere; 2010 May; 79(9):953-7. PubMed ID: 20334890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of a general toxicity test to predict heavy metal concentrations in residential soils.
    Aelion CM; Davis HT
    Chemosphere; 2007 Mar; 67(5):1043-9. PubMed ID: 17140621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing single and joint effects of chemicals on the survival and reproduction of Folsomia candida (Collembola) in soil.
    Amorim MJ; Pereira C; Menezes-Oliveira VB; Campos B; Soares AM; Loureiro S
    Environ Pollut; 2012 Jan; 160(1):145-52. PubMed ID: 22035938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can avoidance behavior of the mite Oppia nitens be used as a rapid toxicity test for soils contaminated with metals or organic chemicals?
    Owojori OJ; Healey J; Princz J; Siciliano SD
    Environ Toxicol Chem; 2011 Nov; 30(11):2594-601. PubMed ID: 21898558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Response surface model for predicting chronic toxicity of cadmium to Paronychiurus kimi (Collembola), with a special emphasis on the importance of soil characteristics in the reproduction test.
    Son J; Shin KI; Cho K
    Chemosphere; 2009 Nov; 77(7):889-94. PubMed ID: 19783280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Avoidance of low doses of naphthalene by Collembola.
    Boitaud L; Salmon S; Bourlette C; Ponge JF
    Environ Pollut; 2006 Feb; 139(3):451-4. PubMed ID: 16112312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of Collembola avoidance tests to characterize sewage sludges as soil amendments.
    Natal-da-luz T; Tidona S; Van Gestel CA; Morais PV; Sousa JP
    Chemosphere; 2009 Dec; 77(11):1526-33. PubMed ID: 19850318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.