These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20550193)

  • 1. Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR.
    Su Y; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2010 Jul; 49(29):6009-20. PubMed ID: 20550193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from (13)C, (31)P, and (19)F solid-state NMR.
    Su Y; Doherty T; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2009 Jun; 48(21):4587-95. PubMed ID: 19364134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes.
    Herce HD; Garcia AE
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20805-10. PubMed ID: 18093956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational disorder of membrane peptides investigated from solid-state NMR line widths and line shapes.
    Su Y; Hong M
    J Phys Chem B; 2011 Sep; 115(36):10758-67. PubMed ID: 21806038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide.
    Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP
    Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.
    Tang M; Waring AJ; Hong M
    J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy.
    Li S; Su Y; Luo W; Hong M
    J Phys Chem B; 2010 Mar; 114(11):4063-9. PubMed ID: 20199036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-penetrating HIV1 TAT peptides can generate pores in model membranes.
    Ciobanasu C; Siebrasse JP; Kubitscheck U
    Biophys J; 2010 Jul; 99(1):153-62. PubMed ID: 20655843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of cell penetrating peptide Tat with model membranes: a biophysical study.
    Dennison SR; Baker RD; Nicholl ID; Phoenix DA
    Biochem Biophys Res Commun; 2007 Nov; 363(1):178-82. PubMed ID: 17854767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2H solid-state NMR study of lipid clustering by cationic antimicrobial and cell-penetrating peptides in model bacterial membranes.
    Kwon B; Waring AJ; Hong M
    Biophys J; 2013 Nov; 105(10):2333-42. PubMed ID: 24268145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cell-penetrating peptide TAT(48-60) induces a non-lamellar phase in DMPC membranes.
    Afonin S; Frey A; Bayerl S; Fischer D; Wadhwani P; Weinkauf S; Ulrich AS
    Chemphyschem; 2006 Oct; 7(10):2134-42. PubMed ID: 16986196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction.
    Chen X; Sa'adedin F; Deme B; Rao P; Bradshaw J
    Biochim Biophys Acta; 2013 Aug; 1828(8):1982-8. PubMed ID: 23643891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution.
    Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G
    Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy.
    Tang M; Hong M
    Mol Biosyst; 2009 Apr; 5(4):317-22. PubMed ID: 19396367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of cell-penetrating peptide fragments by disulfide formation.
    Tooyserkani R; Lipiński W; Willemsen B; Löwik DWPM
    Amino Acids; 2020 Aug; 52(8):1161-1168. PubMed ID: 32737661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence.
    Ziegler A; Nervi P; Dürrenberger M; Seelig J
    Biochemistry; 2005 Jan; 44(1):138-48. PubMed ID: 15628854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.