These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20550193)

  • 41. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance.
    Su Y; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potent Antibacterial Activity of Synthetic Peptides Designed from Salusin-β and HIV-1 Tat(49-57).
    Kimura M; Kosuge K; Ko Y; Kurosaki N; Tagawa N; Kato I; Uchida Y
    Chem Pharm Bull (Tokyo); 2020 Aug; 68(8):810-813. PubMed ID: 32448814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
    Witte K; Olausson BE; Walrant A; Alves ID; Vogel A
    Biochim Biophys Acta; 2013 Feb; 1828(2):824-33. PubMed ID: 23174351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption.
    Zhang Y; Lu W; Hong M
    Biochemistry; 2010 Nov; 49(45):9770-82. PubMed ID: 20961099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Negative lipid membranes enhance the adsorption of TAT-decorated elastin-like polypeptide micelles.
    Walter V; Schmatko T; Muller P; Schroder AP; MacEwan SR; Chilkoti A; Marques CM
    Biophys J; 2024 Apr; 123(7):901-908. PubMed ID: 38449310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling.
    Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA
    Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular Mechanism of P53 Peptide Permeation through Lipid Membranes from Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
    Li M; Li J; Lu X; Schroder R; Chandramohan A; Wuelfing WP; Templeton AC; Xu W; Gindy M; Kesisoglou F; Ling J; Sawyer T; Verma CS; Partridge AW; Su Y
    J Am Chem Soc; 2024 Aug; 146(33):23075-23091. PubMed ID: 39110018
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization.
    Futaki S; Nakase I
    Acc Chem Res; 2017 Oct; 50(10):2449-2456. PubMed ID: 28910080
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains.
    Lamazière A; Wolf C; Lambert O; Chassaing G; Trugnan G; Ayala-Sanmartin J
    PLoS One; 2008 Apr; 3(4):e1938. PubMed ID: 18398464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane binding and translocation of cell-penetrating peptides.
    Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B
    Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulations of the interactions of kinin peptides with an anionic POPG bilayer.
    Manna M; Mukhopadhyay C
    Langmuir; 2011 Apr; 27(7):3713-22. PubMed ID: 21355573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution NMR studies of cell-penetrating peptides in model membrane systems.
    Mäler L
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface presentation of functional peptides in solution determines cell internalization efficiency of TAT conjugated nanoparticles.
    Todorova N; Chiappini C; Mager M; Simona B; Patel II; Stevens MM; Yarovsky I
    Nano Lett; 2014 Sep; 14(9):5229-37. PubMed ID: 25157643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Arginine-rich cell-penetrating peptides.
    Schmidt N; Mishra A; Lai GH; Wong GC
    FEBS Lett; 2010 May; 584(9):1806-13. PubMed ID: 19925791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
    Mani R; Waring AJ; Hong M
    Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic conformational responses of a human cannabinoid receptor-1 helix domain to its membrane environment.
    Tiburu EK; Gulla SV; Tiburu M; Janero DR; Budil DE; Makriyannis A
    Biochemistry; 2009 Jun; 48(22):4895-904. PubMed ID: 19485422
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.