These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20550267)

  • 1. Environment-specific noise suppression for improved speech intelligibility by cochlear implant users.
    Hu Y; Loizou PC
    J Acoust Soc Am; 2010 Jun; 127(6):3689-95. PubMed ID: 20550267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm that improves speech intelligibility in noise for normal-hearing listeners.
    Kim G; Lu Y; Hu Y; Loizou PC
    J Acoust Soc Am; 2009 Sep; 126(3):1486-94. PubMed ID: 19739761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new sound coding strategy for suppressing noise in cochlear implants.
    Hu Y; Loizou PC
    J Acoust Soc Am; 2008 Jul; 124(1):498-509. PubMed ID: 18646993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the intelligibility of vocoded speech.
    Chen F; Loizou PC
    Ear Hear; 2011; 32(3):331-8. PubMed ID: 21206363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users.
    Koning R; Wouters J
    Hear Res; 2016 Dec; 342():13-22. PubMed ID: 27697583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants.
    Nogueira W; Rode T; Büchner A
    J Acoust Soc Am; 2016 Feb; 139(2):728-39. PubMed ID: 26936556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a sigmoidal-shaped function for noise attenuation in cochlear implants.
    Hu Y; Loizou PC; Li N; Kasturi K
    J Acoust Soc Am; 2007 Oct; 122(4):EL128-34. PubMed ID: 17902741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K; Loizou PC
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Noise Reduction Algorithm ClearVoice in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in Relation to Spectral Resolution.
    Dingemanse JG; Goedegebure A
    Ear Hear; 2015; 36(3):357-67. PubMed ID: 25479412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fluctuating maskers on speech understanding of high-performing cochlear implant users.
    Zirn S; Polterauer D; Keller S; Hemmert W
    Int J Audiol; 2016; 55(5):295-304. PubMed ID: 26865377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners.
    Nelson PB; Jin SH; Carney AE; Nelson DA
    J Acoust Soc Am; 2003 Feb; 113(2):961-8. PubMed ID: 12597189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale training to increase speech intelligibility for hearing-impaired listeners in novel noises.
    Chen J; Wang Y; Yoho SE; Wang D; Healy EW
    J Acoust Soc Am; 2016 May; 139(5):2604. PubMed ID: 27250154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of noise reduction methods for sentence recognition by Mandarin-speaking cochlear implant listeners.
    Chen F; Hu Y; Yuan M
    Ear Hear; 2015 Jan; 36(1):61-71. PubMed ID: 25127321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.