These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20550269)

  • 1. Updating signal typing in voice: addition of type 4 signals.
    Sprecher A; Olszewski A; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2010 Jun; 127(6):3710-16. PubMed ID: 20550269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic analysis of aperiodic voice: perturbation and nonlinear dynamic properties in esophageal phonation.
    Maccallum JK; Cai L; Zhou L; Zhang Y; Jiang JJ
    J Voice; 2009 May; 23(3):283-90. PubMed ID: 18411036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voice outcomes after transoral laser microsurgery for early glottic cancer-considering signal type and smoothed cepstral peak prominence.
    Stone D; McCabe P; Palme CE; Heard R; Eastwood C; Riffat F; Madill C
    J Voice; 2015 May; 29(3):370-81. PubMed ID: 25301299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suitability of acoustic perturbation measures in analysing periodic and nearly periodic voice signals.
    Ma EP; Yiu EM
    Folia Phoniatr Logop; 2005; 57(1):38-47. PubMed ID: 15655340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Voice Type Components Present in Human Phonation Using a Modified Diffusive Chaos Technique.
    Liu B; Polce E; Raj H; Jiang J
    Ann Otol Rhinol Laryngol; 2019 Oct; 128(10):921-931. PubMed ID: 31084359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cepstral analysis of hypokinetic and ataxic voices: correlations with perceptual and other acoustic measures.
    Jannetts S; Lowit A
    J Voice; 2014 Nov; 28(6):673-80. PubMed ID: 24836365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The Evaluation of Voice Quality via Signal Typing in Voice using Narrowband Spectrograms].
    Barsties B; Hoffmann U; Maryn Y
    Laryngorhinootologie; 2016 Feb; 95(2):105-11. PubMed ID: 26468672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Rate of Divergence as an Objective Measure to Differentiate between Voice Signal Types Based on the Amount of Disorder in the Signal.
    Calawerts WM; Lin L; Sprott JC; Jiang JJ
    J Voice; 2017 Jan; 31(1):16-23. PubMed ID: 26920858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual and Acoustic Analyses of Good Voice Quality in Male Radio Performers.
    Warhurst S; Madill C; McCabe P; Ternström S; Yiu E; Heard R
    J Voice; 2017 Mar; 31(2):259.e1-259.e12. PubMed ID: 27342753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Objective Parameter to Classify Voice Signals Based on Variation in Energy Distribution.
    Liu B; Polce E; Jiang J
    J Voice; 2019 Sep; 33(5):591-602. PubMed ID: 29785936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic signal typing for evaluation of voice quality in tracheoesophageal speech.
    van As-Brooks CJ; Koopmans-van Beinum FJ; Pols LC; Hilgers FJ
    J Voice; 2006 Sep; 20(3):355-68. PubMed ID: 16185840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of Sustained Vowels in Down Syndrome (DS): A Case Study Using Spectrograms and Perturbation Data to Investigate Voice Quality in Four Adults With DS.
    Jeffery T; Cunningham S; Whiteside SP
    J Voice; 2018 Sep; 32(5):644.e11-644.e24. PubMed ID: 28943107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Local Intrinsic Dimension for Acoustical Analysis of Voice Signal Components.
    Liu B; Polce E; Jiang J
    Ann Otol Rhinol Laryngol; 2018 Sep; 127(9):588-597. PubMed ID: 29911408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computer system for acoustic analysis of pathological voices and laryngeal diseases screening.
    Hadjitodorov S; Mitev P
    Med Eng Phys; 2002 Jul; 24(6):419-29. PubMed ID: 12135650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perceptual-auditory and Acoustic Analysis of Air Traffic Controllers' Voices Pre- and Postshift.
    Villar AC; Korn GP; Azevedo RR
    J Voice; 2016 Nov; 30(6):768.e11-768.e15. PubMed ID: 26778327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of objective voice measures of normal speaking voices.
    Leong K; Hawkshaw MJ; Dentchev D; Gupta R; Lurie D; Sataloff RT
    J Voice; 2013 Mar; 27(2):170-6. PubMed ID: 23280378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Moving Window on Acoustic Analysis.
    Shu M; Jiang JJ; Willey M
    J Voice; 2016 Jan; 30(1):5-10. PubMed ID: 25998407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective acoustic analysis of pathological voices from patients with vocal nodules and polyps.
    Jiang JJ; Zhang Y; MacCallum J; Sprecher A; Zhou L
    Folia Phoniatr Logop; 2009; 61(6):342-9. PubMed ID: 19864916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pitch Strength as an Outcome Measure for Treatment of Dysphonia.
    Kopf LM; Jackson-Menaldi C; Rubin AD; Skeffington J; Hunter EJ; Skowronski MD; Shrivastav R
    J Voice; 2017 Nov; 31(6):691-696. PubMed ID: 28318967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.