These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 20550402)
1. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water. Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S J Chem Phys; 2010 Jun; 132(22):224501. PubMed ID: 20550402 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations and instantaneous normal-mode analysis of the vibrational relaxation of the C-H stretching modes of N-methylacetamide-d in liquid deuterated water. Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S J Phys Chem A; 2010 Nov; 114(43):11450-61. PubMed ID: 20932051 [TBL] [Abstract][Full Text] [Related]
3. Hybrid quantum/classical simulations of the vibrational relaxation of the amide I mode of N-methylacetamide in D2O solution. Bastida A; Soler MA; Zúñiga J; Requena A; Kalstein A; Fernández-Alberti S J Phys Chem B; 2012 Mar; 116(9):2969-80. PubMed ID: 22304000 [TBL] [Abstract][Full Text] [Related]
4. Mode-specific vibrational energy relaxation of amide I' and II' modes in N-methylacetamide/water clusters: intra- and intermolecular energy transfer mechanisms. Zhang Y; Fujisaki H; Straub JE J Phys Chem A; 2009 Apr; 113(13):3051-60. PubMed ID: 19320512 [TBL] [Abstract][Full Text] [Related]
5. Vibrational energy relaxation of the amide I mode of N-methylacetamide in D₂O studied through Born-Oppenheimer molecular dynamics. Farag MH; Bastida A; Ruiz-López MF; Monard G; Ingrosso F J Phys Chem B; 2014 Jun; 118(23):6186-97. PubMed ID: 24836589 [TBL] [Abstract][Full Text] [Related]
6. Instantaneous normal mode analysis of the vibrational relaxation of the amide I mode of alanine dipeptide in water. Farag MH; Zúñiga J; Requena A; Bastida A J Chem Phys; 2013 May; 138(20):205102. PubMed ID: 23742520 [TBL] [Abstract][Full Text] [Related]
7. Redistribution of carbonyl stretch mode energy in isolated and solvated N-methylacetamide: kinetic energy spectral density analyses. Jeon J; Cho M J Chem Phys; 2011 Dec; 135(21):214504. PubMed ID: 22149799 [TBL] [Abstract][Full Text] [Related]
8. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O. Kandratsenka A; Schroeder J; Schwarzer D; Vikhrenko VS J Chem Phys; 2009 May; 130(17):174507. PubMed ID: 19425790 [TBL] [Abstract][Full Text] [Related]
9. Vibrational relaxation pathways of amide I and amide II modes in N-methylacetamide. Piatkowski L; Bakker HJ J Chem Phys; 2012 Apr; 136(16):164504. PubMed ID: 22559493 [TBL] [Abstract][Full Text] [Related]
10. Vibrational relaxation of normal and deuterated liquid nitromethane. Shigeto S; Pang Y; Fang Y; Dlott DD J Phys Chem B; 2008 Jan; 112(2):232-41. PubMed ID: 17685649 [TBL] [Abstract][Full Text] [Related]
11. Simulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution. Bloem R; Dijkstra AG; Jansen Tl; Knoester J J Chem Phys; 2008 Aug; 129(5):055101. PubMed ID: 18698926 [TBL] [Abstract][Full Text] [Related]
12. Picosecond IR-UV pump-probe spectroscopic study of the dynamics of the vibrational relaxation of jet-cooled phenol. II. Intracluster vibrational energy redistribution of the OH stretching vibration of hydrogen-bonded clusters. Kayano M; Ebata T; Yamada Y; Mikami N J Chem Phys; 2004 Apr; 120(16):7410-7. PubMed ID: 15267651 [TBL] [Abstract][Full Text] [Related]
13. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy. Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112 [TBL] [Abstract][Full Text] [Related]
14. Vibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution. Dijkstra AG; Jansen Tl; Bloem R; Knoester J J Chem Phys; 2007 Nov; 127(19):194505. PubMed ID: 18035890 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the influence of solute-solvent interactions on the vibrational energy relaxation dynamics of large molecules in liquids. Pigliucci A; Duvanel G; Daku LM; Vauthey E J Phys Chem A; 2007 Jul; 111(28):6135-45. PubMed ID: 17591756 [TBL] [Abstract][Full Text] [Related]
16. Full quantum vibrational simulation of the relaxation of the cyanide ion in water using the Ehrenfest method with quantum corrections. Bastida A; Zúñiga J; Requena A; Miguel B J Chem Phys; 2008 Oct; 129(15):154501. PubMed ID: 19045203 [TBL] [Abstract][Full Text] [Related]
17. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution. Takeuchi S; Tahara T J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312 [TBL] [Abstract][Full Text] [Related]
18. The anharmonic vibrational potential and relaxation pathways of the amide I and II modes of N-methylacetamide. DeFlores LP; Ganim Z; Ackley SF; Chung HS; Tokmakoff A J Phys Chem B; 2006 Sep; 110(38):18973-80. PubMed ID: 16986892 [TBL] [Abstract][Full Text] [Related]
19. Vibrational energy relaxation of isotopically labeled amide I modes in cytochrome c: theoretical investigation of vibrational energy relaxation rates and pathways. Fujisaki H; Straub JE J Phys Chem B; 2007 Oct; 111(41):12017-23. PubMed ID: 17887785 [TBL] [Abstract][Full Text] [Related]
20. Vibrational relaxation pathways of AI and AII modes in N-methylacetamide clusters. Piatkowski L; Bakker HJ J Phys Chem A; 2010 Nov; 114(43):11462-70. PubMed ID: 20942502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]