These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 20550510)

  • 41. The QSAR Paradigm in Fragment-Based Drug Discovery: From the Virtual Generation of Target Inhibitors to Multi-Scale Modeling.
    Kleandrova VV; Speck-Planche A
    Mini Rev Med Chem; 2020; 20(14):1357-1374. PubMed ID: 32013845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.
    Vora J; Patel S; Sinha S; Sharma S; Srivastava A; Chhabria M; Shrivastava N
    J Biomol Struct Dyn; 2019 Jan; 37(1):131-146. PubMed ID: 29268664
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Current insights into computer-aided immunotherapeutic design strategies.
    Cai Z; Zhang G; Zhang X; Liu Y; Fu X
    Int J Immunopathol Pharmacol; 2015 Sep; 28(3):278-85. PubMed ID: 26091813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.
    Roy K; Mitra I
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):450-74. PubMed ID: 21521150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. QSAR of phytochemicals for the design of better drugs.
    Kar S; Roy K
    Expert Opin Drug Discov; 2012 Oct; 7(10):877-902. PubMed ID: 22897485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Virtual screening in lead discovery and optimization.
    Jain AN
    Curr Opin Drug Discov Devel; 2004 Jul; 7(4):396-403. PubMed ID: 15338948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemoinformatics-applications in food chemistry.
    Martinez-Mayorga K; Medina-Franco JL
    Adv Food Nutr Res; 2009; 58():33-56. PubMed ID: 19878857
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Artificial intelligence in drug design.
    Zhong F; Xing J; Li X; Liu X; Fu Z; Xiong Z; Lu D; Wu X; Zhao J; Tan X; Li F; Luo X; Li Z; Chen K; Zheng M; Jiang H
    Sci China Life Sci; 2018 Oct; 61(10):1191-1204. PubMed ID: 30054833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Free resources to assist structure-based virtual ligand screening experiments.
    Villoutreix BO; Renault N; Lagorce D; Sperandio O; Montes M; Miteva MA
    Curr Protein Pept Sci; 2007 Aug; 8(4):381-411. PubMed ID: 17696871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combating Diseases with Computational Strategies Used for Drug Design and Discovery.
    Makhouri FR; Ghasemi JB
    Curr Top Med Chem; 2018; 18(32):2743-2773. PubMed ID: 30663568
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinformatics platform development: from gene to lead compound.
    Ivanov AS; Veselovsky AV; Dubanov AV; Skvortsov VS
    Methods Mol Biol; 2006; 316():389-431. PubMed ID: 16671411
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of
    Haider M; Chauhan A; Tariq S; Pathak DP; Siddiqui N; Ali S; Pottoo FH; Ali R
    Curr Top Med Chem; 2021; 21(11):995-1011. PubMed ID: 34061002
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the contribution of molecular topology to drug design and discovery.
    Gálvez J; García-Doménech R
    Curr Comput Aided Drug Des; 2010 Dec; 6(4):252-68. PubMed ID: 20883200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of quantitative structure-activity relationships and its application in rational drug design.
    Yang GF; Huang X
    Curr Pharm Des; 2006; 12(35):4601-11. PubMed ID: 17168765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational discovery of novel trypanosomicidal drug-like chemicals by using bond-based non-stochastic and stochastic quadratic maps and linear discriminant analysis.
    Castillo-Garit JA; Vega MC; Rolon M; Marrero-Ponce Y; Kouznetsov VV; Torres DF; Gómez-Barrio A; Bello AA; Montero A; Torrens F; Pérez-Giménez F
    Eur J Pharm Sci; 2010 Jan; 39(1-3):30-6. PubMed ID: 19854271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular topology as a novel approach for drug discovery.
    Gálvez J; Gálvez-Llompart M; García-Domenech R
    Expert Opin Drug Discov; 2012 Feb; 7(2):133-53. PubMed ID: 22468915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computer-aided drug discovery research at a global contract research organization.
    Kitchen DB
    J Comput Aided Mol Des; 2017 Mar; 31(3):309-318. PubMed ID: 27804014
    [TBL] [Abstract][Full Text] [Related]  

  • 59. QSAR classification model for antibacterial compounds and its use in virtual screening.
    Singh N; Chaudhury S; Liu R; AbdulHameed MD; Tawa G; Wallqvist A
    J Chem Inf Model; 2012 Oct; 52(10):2559-69. PubMed ID: 23013546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virtual Screening, Biological Evaluation, and 3D-QSAR Studies of New HIV-1 Entry Inhibitors That Function via the CD4 Primary Receptor.
    Zhang C; Zhang H; Huang LS; Zhu S; Xu Y; Zhang XQ; Schooley RT; Yang X; Huang Z; An J
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30463393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.