These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 20550510)

  • 61. Ligand biological activity predictions using fingerprint-based artificial neural networks (FANN-QSAR).
    Myint KZ; Xie XQ
    Methods Mol Biol; 2015; 1260():149-64. PubMed ID: 25502380
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Drug discovery and design for complex diseases through QSAR computational methods.
    Munteanu CR; Fernández-Blanco E; Seoane JA; Izquierdo-Novo P; Rodríguez-Fernández JA; Prieto-González JM; Rabuñal JR; Pazos A
    Curr Pharm Des; 2010; 16(24):2640-55. PubMed ID: 20642425
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The integration of computational chemistry during drug discovery to drive decisions: are we there yet?
    Desai PV
    Future Med Chem; 2016 Sep; 8(14):1717-20. PubMed ID: 27581125
    [No Abstract]   [Full Text] [Related]  

  • 64. Challenges with multi-objective QSAR in drug discovery.
    Lambrinidis G; Tsantili-Kakoulidou A
    Expert Opin Drug Discov; 2018 Sep; 13(9):851-859. PubMed ID: 29996683
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Grid-based Continual Analysis of Molecular Interior for Drug Discovery, QSAR and QSPR.
    Potemkin AV; Grishina MA; Potemkin VA
    Curr Drug Discov Technol; 2017; 14(3):181-205. PubMed ID: 28176631
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Jak2 inhibitor--a jackpot for pharmaceutical industries: a comprehensive computational method in the discovery of new potent Jak2 inhibitors.
    Singh KhD; Naveena Q; Karthikeyan M
    Mol Biosyst; 2014 Aug; 10(8):2146-59. PubMed ID: 24874539
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proposing novel TNFα direct inhibitor Scaffolds using fragment-docking based e-pharmacophore modeling and binary QSAR-based virtual screening protocols pipeline.
    Zaka M; Abbasi BH; Durdagi S
    J Mol Graph Model; 2018 Oct; 85():111-121. PubMed ID: 30149308
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cheminformatics in the Service of GPCR Drug Discovery.
    James T
    Methods Mol Biol; 2018; 1705():395-411. PubMed ID: 29188575
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exploiting QSAR models in lead optimization.
    Gedeck P; Lewis RA
    Curr Opin Drug Discov Devel; 2008 Jul; 11(4):569-75. PubMed ID: 18600573
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Virtual screening in structure-based drug discovery.
    Barril X; Hubbard RE; Morley SD
    Mini Rev Med Chem; 2004 Sep; 4(7):779-91. PubMed ID: 15379645
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY; Itai A
    J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [The rational computer-aided design of new drugs: a review of the methods].
    Ivanov AS; Liul'kin IuA; Skvortsov VS; Rumiantsev AB
    Vestn Ross Akad Med Nauk; 1995; (12):51-6. PubMed ID: 8664605
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of biologically active compounds by combining 3D QSAR and structure-based design methods.
    Sippl W
    J Comput Aided Mol Des; 2002 Nov; 16(11):825-30. PubMed ID: 12825795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Discovery of novel CDK1 inhibitors by combining pharmacophore modeling, QSAR analysis and in silico screening followed by in vitro bioassay.
    Al-Sha'er MA; Taha MO
    Eur J Med Chem; 2010 Sep; 45(9):4316-30. PubMed ID: 20638755
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A Deep Learning-Based Chemical System for QSAR Prediction.
    Hu S; Chen P; Gu P; Wang B
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):3020-3028. PubMed ID: 32142459
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The advancement of multidimensional QSAR for novel drug discovery - where are we headed?
    Wang T; Yuan XS; Wu MB; Lin JP; Yang LR
    Expert Opin Drug Discov; 2017 Aug; 12(8):769-784. PubMed ID: 28562095
    [TBL] [Abstract][Full Text] [Related]  

  • 77. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery.
    Neves BJ; Braga RC; Melo-Filho CC; Moreira-Filho JT; Muratov EN; Andrade CH
    Front Pharmacol; 2018; 9():1275. PubMed ID: 30524275
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hsp90 inhibitors, part 1: definition of 3-D QSAutogrid/R models as a tool for virtual screening.
    Ballante F; Caroli A; Wickersham RB; Ragno R
    J Chem Inf Model; 2014 Mar; 54(3):956-69. PubMed ID: 24564321
    [TBL] [Abstract][Full Text] [Related]  

  • 79. QSAR and molecular docking techniques for the discovery of potent monoamine oxidase B inhibitors: computer-aided generation of new rasagiline bioisosteres.
    Speck-Planche A; Kleandrova VV
    Curr Top Med Chem; 2012; 12(16):1734-47. PubMed ID: 23030609
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modern Computational Strategies for Designing Drugs to Curb Human Diseases: A Prospect.
    Dar KB; Bhat AH; Amin S; Hamid R; Anees S; Anjum S; Reshi BA; Zargar MA; Masood A; Ganie SA
    Curr Top Med Chem; 2018; 18(31):2702-2719. PubMed ID: 30659543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.