These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil. Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550 [TBL] [Abstract][Full Text] [Related]
6. In situ chemical fixation of arsenic-contaminated soils: an experimental study. Yang L; Donahoe RJ; Redwine JC Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278 [TBL] [Abstract][Full Text] [Related]
7. Transport of sulfadiazine in soil columns: experiments and modelling approaches. Wehrhan A; Kasteel R; Simunek J; Groeneweg J; Vereecken H J Contam Hydrol; 2007 Jan; 89(1-2):107-35. PubMed ID: 17030463 [TBL] [Abstract][Full Text] [Related]
8. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Anawar HM; Akai J; Sakugawa H Chemosphere; 2004 Feb; 54(6):753-62. PubMed ID: 14602108 [TBL] [Abstract][Full Text] [Related]
9. Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. Smith E; Naidu R; Alston AM J Environ Qual; 2002; 31(2):557-63. PubMed ID: 11931447 [TBL] [Abstract][Full Text] [Related]
10. Simulation of nonlinear sorption of N-heterocyclic organic contaminates in soil columns. Bi E; Zhang L; Schmidt TC; Haderlein SB J Contam Hydrol; 2009 Jun; 107(1-2):58-65. PubMed ID: 19419791 [TBL] [Abstract][Full Text] [Related]
11. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea. Nam SM; Kim M; Hyun S; Lee SH Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095 [TBL] [Abstract][Full Text] [Related]
12. Modeling Cd(II) adsorption to heterogeneous subsurface soils in the presence of citric acid using a semi-empirical surface complexation approach. Kantar C; Ikizoglu G; Koleli N; Kaya O J Contam Hydrol; 2009 Nov; 110(3-4):100-9. PubMed ID: 19836102 [TBL] [Abstract][Full Text] [Related]
13. Effect of seepage conditions on chemical attenuation of arsenic by soils across an abandoned mine site. Hyun S; Kim J; Kim DY; Moon DH Chemosphere; 2012 May; 87(6):602-7. PubMed ID: 22300557 [TBL] [Abstract][Full Text] [Related]
14. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
15. Effects of initial solute distribution on contaminant availability, desorption modeling, and subsurface remediation. Haws NW; Ball WP; Bouwer EJ J Environ Qual; 2007; 36(5):1392-402. PubMed ID: 17766818 [TBL] [Abstract][Full Text] [Related]
16. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand. Craw D J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268 [TBL] [Abstract][Full Text] [Related]
17. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain. Shaoping H; Xincai C; Jiyan S; Yingxu C; Qi L Chemosphere; 2008 May; 71(11):2091-7. PubMed ID: 18329689 [TBL] [Abstract][Full Text] [Related]
18. Zinc and lead transfer in a contaminated roadside soil: experimental study and modeling. Hanna K; Lassabatere L; Bechet B J Hazard Mater; 2009 Jan; 161(2-3):1499-505. PubMed ID: 18565648 [TBL] [Abstract][Full Text] [Related]
19. Groundwater derived arsenic in high carbonate wetland soils: sources, sinks, and mobility. Bauer M; Fulda B; Blodau C Sci Total Environ; 2008 Aug; 401(1-3):109-20. PubMed ID: 18495216 [TBL] [Abstract][Full Text] [Related]
20. Discerning and modeling the fate and transport of testosterone in undisturbed soil. Fan Z; Casey FX; Hakk H; Larsen GL J Environ Qual; 2007; 36(3):864-73. PubMed ID: 17485718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]