BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20550627)

  • 81. Synaptic alterations associated with depression and schizophrenia: potential as a therapeutic target.
    Calabrese F; Riva MA; Molteni R
    Expert Opin Ther Targets; 2016 Oct; 20(10):1195-207. PubMed ID: 27167520
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Animal models of major depression and their clinical implications.
    Czéh B; Fuchs E; Wiborg O; Simon M
    Prog Neuropsychopharmacol Biol Psychiatry; 2016 Jan; 64():293-310. PubMed ID: 25891248
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Increased synaptic markers in hippocampus of depressed patients.
    Jørgensen OS; Riederer P
    J Neural Transm; 1985; 64(1):55-66. PubMed ID: 4067603
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [The neuronal protein Arc: a retrotransposon capsid domesticated to serve key synaptic functions].
    Albagli O; Pelczar H
    Med Sci (Paris); 2020 Nov; 36(11):980-983. PubMed ID: 33151858
    [No Abstract]   [Full Text] [Related]  

  • 85. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (1).
    Gold PW; Goodwin FK; Chrousos GP
    N Engl J Med; 1988 Aug; 319(6):348-53. PubMed ID: 3292920
    [No Abstract]   [Full Text] [Related]  

  • 86. Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder.
    Yoon S; Iqbal H; Kim SM; Jin M
    Biomol Ther (Seoul); 2023 Mar; 31(2):148-160. PubMed ID: 36694423
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Genetic/environment interactions in chronic mild stress.
    Overstreet DH; Pucilowski O; Djuric V
    Psychopharmacology (Berl); 1997 Dec; 134(4):359-60; discussion 371-7. PubMed ID: 9452175
    [No Abstract]   [Full Text] [Related]  

  • 88. Low on energy? An energy supply-demand perspective on stress and depression.
    Østergaard L; Jørgensen MB; Knudsen GM
    Neurosci Biobehav Rev; 2018 Nov; 94():248-270. PubMed ID: 30145282
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Neuroendocrine link between stress, depression and diabetes.
    Detka J; Kurek A; Basta-Kaim A; Kubera M; Lasoń W; Budziszewska B
    Pharmacol Rep; 2013; 65(6):1591-600. PubMed ID: 24553007
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Animal models for the study of depressive disorder.
    Song J; Kim YK
    CNS Neurosci Ther; 2021 Jun; 27(6):633-642. PubMed ID: 33650178
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Encore: Behavioural animal models of stress, depression and mood disorders.
    Petković A; Chaudhury D
    Front Behav Neurosci; 2022; 16():931964. PubMed ID: 36004305
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effects of the Prenatal Administration of Tetanus Toxoid on the Sociability and Explorative Behaviors of Rat Offspring: A Preliminary Study.
    Sünnetçi E; Durankuş F; Albayrak Y; Erdoğan MA; Atasoy Ö; Erbaş O
    Clin Psychopharmacol Neurosci; 2021 Feb; 19(1):84-92. PubMed ID: 33508791
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Mating and parenting experiences sculpture mood-modulating effects of oxytocin-MCH signaling.
    Phan J; Alhassen L; Argelagos A; Alhassen W; Vachirakorntong B; Lin Z; Sanathara N; Alachkar A
    Sci Rep; 2020 Aug; 10(1):13611. PubMed ID: 32788646
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Brain Signaling Framework for Stress-Induced Depression and Ketamine Treatment Elucidated by Phosphoproteomics.
    Xiao Y; Luo H; Yang WZ; Zeng Y; Shen Y; Ni X; Shi Z; Zhong J; Liang Z; Fu X; Tu H; Sun W; Shen WL; Hu J; Yang J
    Front Cell Neurosci; 2020; 14():48. PubMed ID: 32317933
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Research progress on the role of type I vesicular glutamate transporter (VGLUT1) in nervous system diseases.
    Du X; Li J; Li M; Yang X; Qi Z; Xu B; Liu W; Xu Z; Deng Y
    Cell Biosci; 2020; 10():26. PubMed ID: 32158532
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Selecting an Appropriate Animal Model of Depression.
    Hao Y; Ge H; Sun M; Gao Y
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31569393
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Identification of key genes, pathways, and miRNA/mRNA regulatory networks of CUMS-induced depression in nucleus accumbens by integrated bioinformatics analysis.
    Ma K; Zhang H; Wei G; Dong Z; Zhao H; Han X; Song X; Zhang H; Zong X; Baloch Z; Wang S
    Neuropsychiatr Dis Treat; 2019; 15():685-700. PubMed ID: 30936699
    [TBL] [Abstract][Full Text] [Related]  

  • 98. microRNA and mRNA profiles in the amygdala are associated with stress-induced depression and resilience in juvenile mice.
    Shen M; Song Z; Wang JH
    Psychopharmacology (Berl); 2019 Jul; 236(7):2119-2142. PubMed ID: 30900007
    [TBL] [Abstract][Full Text] [Related]  

  • 99. microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress.
    Si Y; Song Z; Sun X; Wang JH
    Am J Med Genet B Neuropsychiatr Genet; 2018 Sep; 177(6):563-579. PubMed ID: 30105773
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Molecular Signatures Underlying Synaptic Vesicle Cargo Retrieval.
    Mori Y; Takamori S
    Front Cell Neurosci; 2017; 11():422. PubMed ID: 29379416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.