These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 20550792)

  • 1. The roles of predators, competitors, and secondary salinization in structuring mosquito (Diptera: Culicidae) assemblages in ephemeral water bodies of the Wheatbelt of Western Australia.
    Carver S; Spafford H; Storey A; Weinstein P
    Environ Entomol; 2010 Jun; 39(3):798-810. PubMed ID: 20550792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colonization of ephemeral water bodies in the Wheatbelt of Western Australia by assemblages of mosquitoes (Diptera: Culicidae): role of environmental factors, habitat, and disturbance.
    Carver S; Spafford H; Storey A; Weinstein P
    Environ Entomol; 2009 Dec; 38(6):1585-94. PubMed ID: 20021752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dryland salinity and the ecology of Ross River virus: the ecological underpinnings of the potential for transmission.
    Carver S; Spafford H; Storey A; Weinstein P
    Vector Borne Zoonotic Dis; 2009 Dec; 9(6):611-22. PubMed ID: 19326966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquatic insect predators and mosquito control.
    Shaalan EA; Canyon DV
    Trop Biomed; 2009 Dec; 26(3):223-61. PubMed ID: 20237438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand.
    Lester PJ; Pike AJ
    J Vector Ecol; 2003 Dec; 28(2):267-74. PubMed ID: 14714676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of dryland salinity on population dynamics of vector mosquitoes (Diptera: Culicidae) of Ross River virus in inland areas of southwestern Western Australia.
    Jardine A; Lindsay MD; Johansen CA; Cook A; Weinstein P
    J Med Entomol; 2008 Nov; 45(6):1011-22. PubMed ID: 19058624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosquito distribution in a saltmarsh: determinants of eggs in a variable environment.
    Rowbottom R; Carver S; Barmuta LA; Weinstein P; Allen GR
    J Vector Ecol; 2017 Jun; 42(1):161-170. PubMed ID: 28504426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mosquitoes and other aquatic insects in fallow field biotopes and rice paddy fields.
    Ohba SY; Matsuo T; Takagi M
    Med Vet Entomol; 2013 Mar; 27(1):96-103. PubMed ID: 23167444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do local differences in saltmarsh ecology influence disease vector mosquito populations?
    Rowbottom R; Carver S; Barmuta LA; Weinstein P; Allen GR
    Med Vet Entomol; 2020 Sep; 34(3):279-290. PubMed ID: 32080876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between predatory aquatic insects and mosquito larvae in residential areas in northern Thailand.
    Sareein N; Phalaraksh C; Rahong P; Techakijvej C; Seok S; Bae YJ
    J Vector Ecol; 2019 Dec; 44(2):223-232. PubMed ID: 31729801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California.
    Su T; Webb JP; Meyer RP; Mulla MS
    J Vector Ecol; 2003 Jun; 28(1):79-89. PubMed ID: 12831132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predatory activity of Rhantus sikkimensis and larvae of Toxorhynchites splendens on mosquito larvae in Darjeeling, India.
    Aditya G; Ash A; Saha GK
    J Vector Borne Dis; 2006 Jun; 43(2):66-72. PubMed ID: 16967818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitat size: a factor determining the opportunity for encounters between mosquito larvae and aquatic predators.
    Sunahara T; Ishizaka K; Mogi M
    J Vector Ecol; 2002 Jun; 27(1):8-20. PubMed ID: 12125876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Assemblages of bloodsucking mosquito larvae (Diptera: Culicidae) in water bodies of the northern Kulunda steppe].
    Belevich OÉ; Iurchenko IuA
    Parazitologiia; 2011; 45(3):182-93. PubMed ID: 21874850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demersal crustacean assemblages along the Pacific coast of Costa Rica: a quantitative and multivariate assessment based on the Victor Hensen Costa Rica expedition (1993/1994).
    Jesse S
    Rev Biol Trop; 1996 Dec; 44 Suppl 3():115-34. PubMed ID: 9393649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden.
    Schäfer ML; Lundström JO; Pfeffer M; Lundkvist E; Landin J
    Med Vet Entomol; 2004 Sep; 18(3):256-67. PubMed ID: 15347393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Current malaria situation in the Republic of Kazakhstan].
    Bismil'din FB; Shapieva ZhZh; Anpilova EN
    Med Parazitol (Mosk); 2001; (1):24-33. PubMed ID: 11548308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Mesocyclops aspericornis (Cyclopoida:Cyclopidae) and Toxorhynchites speciosus as integrated predators of mosquitoes in tire habitats in Queensland.
    Brown MD; Hendrikz JK; Greenwood JG; Kay BH
    J Am Mosq Control Assoc; 1996 Sep; 12(3 Pt 1):414-20. PubMed ID: 8887220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of wetland vegetation drying time on abundance of mosquitoes and other invertebrates.
    Sanford MR; Keiper JB; Walton WE
    J Am Mosq Control Assoc; 2003 Dec; 19(4):361-6. PubMed ID: 14710737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development.
    Rowbottom R; Carver S; Barmuta LA; Weinstein P; Foo D; Allen GR
    PLoS One; 2015; 10(11):e0142472. PubMed ID: 26558896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.