These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20550886)

  • 1. Peptide partitioning properties from direct insertion studies.
    Ulmschneider MB; Smith JC; Ulmschneider JP
    Biophys J; 2010 Jun; 98(12):L60-2. PubMed ID: 20550886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions.
    Ulmschneider JP; Smith JC; White SH; Ulmschneider MB
    J Am Chem Soc; 2011 Oct; 133(39):15487-95. PubMed ID: 21861483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining peptide partitioning properties via computer simulation.
    Ulmschneider JP; Andersson M; Ulmschneider MB
    J Membr Biol; 2011 Jan; 239(1-2):15-26. PubMed ID: 21107546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides.
    Ulmschneider MB; Doux JP; Killian JA; Smith JC; Ulmschneider JP
    J Am Chem Soc; 2010 Mar; 132(10):3452-60. PubMed ID: 20163187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model.
    Bordner AJ; Zorman B; Abagyan R
    J Comput Aided Mol Des; 2011 Oct; 25(10):895-911. PubMed ID: 21904908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and modelling the interactions of peptides with membranes: from partitioning to self-assembly.
    Chen CH; Melo MC; Berglund N; Khan A; de la Fuente-Nunez C; Ulmschneider JP; Ulmschneider MB
    Curr Opin Struct Biol; 2020 Apr; 61():160-166. PubMed ID: 32006812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-energy cost for translocon-assisted insertion of membrane proteins.
    Gumbart J; Chipot C; Schulten K
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3596-601. PubMed ID: 21317362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of the membrane interface as the reference state for membrane protein stability.
    Ulmschneider JP; Smith JC; White SH; Ulmschneider MB
    Biochim Biophys Acta Biomembr; 2018 Dec; 1860(12):2539-2548. PubMed ID: 30293965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
    Schow EV; Freites JA; Myint PC; Bernsel A; von Heijne G; White SH; Tobias DJ
    J Membr Biol; 2011 Jan; 239(1-2):35-48. PubMed ID: 21127848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed Free Energies of Peptide Insertion into Bilayers are Independent of Computational Method.
    Gumbart JC; Ulmschneider MB; Hazel A; White SH; Ulmschneider JP
    J Membr Biol; 2018 Jun; 251(3):345-356. PubMed ID: 29520628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion.
    Ulmschneider MB; Ulmschneider JP; Schiller N; Wallace BA; von Heijne G; White SH
    Nat Commun; 2014 Sep; 5():4863. PubMed ID: 25204588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and insertion thermodynamics of the transmembrane WALP peptide.
    Bereau T; Bennett WF; Pfaendtner J; Deserno M; Karttunen M
    J Chem Phys; 2015 Dec; 143(24):243127. PubMed ID: 26723612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers.
    Castillo N; Monticelli L; Barnoud J; Tieleman DP
    Chem Phys Lipids; 2013 Apr; 169():95-105. PubMed ID: 23415670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide Folding in Translocon-Like Pores.
    Ulmschneider MB; Koehler Leman J; Fennell H; Beckstein O
    J Membr Biol; 2015 Jun; 248(3):407-17. PubMed ID: 26016471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.