BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 20550897)

  • 1. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy.
    Darling EM; Wilusz RE; Bolognesi MP; Zauscher S; Guilak F
    Biophys J; 2010 Jun; 98(12):2848-56. PubMed ID: 20550897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth-dependent anisotropy of the micromechanical properties of the extracellular and pericellular matrices of articular cartilage evaluated via atomic force microscopy.
    McLeod MA; Wilusz RE; Guilak F
    J Biomech; 2013 Feb; 46(3):586-92. PubMed ID: 23062866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomechanical role for perlecan in the pericellular matrix of articular cartilage.
    Wilusz RE; Defrate LE; Guilak F
    Matrix Biol; 2012 Jul; 31(6):320-7. PubMed ID: 22659389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunofluorescence-guided atomic force microscopy to measure the micromechanical properties of the pericellular matrix of porcine articular cartilage.
    Wilusz RE; DeFrate LE; Guilak F
    J R Soc Interface; 2012 Nov; 9(76):2997-3007. PubMed ID: 22675162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of biomechanical properties of the extracellular and pericellular matrix and their interconnection throughout the course of osteoarthritis.
    Danalache M; Jacobi LF; Schwitalle M; Hofmann UK
    J Biomech; 2019 Dec; 97():109409. PubMed ID: 31629545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization.
    Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA
    Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage.
    Wilusz RE; Zauscher S; Guilak F
    Osteoarthritis Cartilage; 2013 Dec; 21(12):1895-903. PubMed ID: 24025318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resistance of the mechanical properties of the chondrocyte pericellular matrix to proteoglycan digestion by chondroitinase, aggrecanase, or hyaluronidase.
    Wilusz RE; Guilak F
    J Mech Behav Biomed Mater; 2014 Oct; 38():183-97. PubMed ID: 24156881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis.
    Alexopoulos LG; Haider MA; Vail TP; Guilak F
    J Biomech Eng; 2003 Jun; 125(3):323-33. PubMed ID: 12929236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure and function of the pericellular matrix of articular cartilage.
    Wilusz RE; Sanchez-Adams J; Guilak F
    Matrix Biol; 2014 Oct; 39():25-32. PubMed ID: 25172825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Williams GM; Upton ML; Setton LA; Guilak F
    J Biomech; 2005 Mar; 38(3):509-17. PubMed ID: 15652549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pericellular Matrix Formation and Atomic Force Microscopy of Single Primary Human Chondrocytes Cultured in Alginate Microgels.
    Fredrikson JP; Brahmachary PP; June RK; Cox LM; Chang CB
    Adv Biol (Weinh); 2024 Jan; 8(1):e2300268. PubMed ID: 37688354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage.
    Choi JB; Youn I; Cao L; Leddy HA; Gilchrist CL; Setton LA; Guilak F
    J Biomech; 2007; 40(12):2596-603. PubMed ID: 17397851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Setton LA; Guilak F
    Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Cues: Bidirectional Reciprocity in the Extracellular Matrix Drives Mechano-Signalling in Articular Cartilage.
    Gilbert SJ; Bonnet CS; Blain EJ
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage.
    Guilak F; Alexopoulos LG; Upton ML; Youn I; Choi JB; Cao L; Setton LA; Haider MA
    Ann N Y Acad Sci; 2006 Apr; 1068():498-512. PubMed ID: 16831947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Atomic Force Microscopy to Detect Early Osteoarthritis.
    Danalache M; Tiwari A; Sigwart V; Hofmann UK
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organisation in osteoarthritic cartilage.
    Danalache M; Kleinert R; Schneider J; Erler AL; Schwitalle M; Riester R; Traub F; Hofmann UK
    Osteoarthritis Cartilage; 2019 May; 27(5):823-832. PubMed ID: 30711608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.