BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20550903)

  • 1. Electrostatics of deformable lipid membranes.
    Vorobyov I; Bekker B; Allen TW
    Biophys J; 2010 Jun; 98(12):2904-13. PubMed ID: 20550903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Dynamics Simulations Based on Polarizable Models Show that Ion Permeation Interconverts between Different Mechanisms as a Function of Membrane Thickness.
    Chen P; Vorobyov I; Roux B; Allen TW
    J Phys Chem B; 2021 Feb; 125(4):1020-1035. PubMed ID: 33493394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Ion Channel Activities of Gramicidin A in the Presence of Ionic Liquids Using Model Cell Membranes.
    Ryu H; Lee H; Iwata S; Choi S; Kim MK; Kim YR; Maruta S; Kim SM; Jeon TJ
    Sci Rep; 2015 Jul; 5():11935. PubMed ID: 26189604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test of molecular dynamics force fields in gramicidin A.
    Bastug T; Kuyucak S
    Eur Biophys J; 2005 Jul; 34(5):377-82. PubMed ID: 15711809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function.
    Foreman-Ortiz IU; Liang D; Laudadio ED; Calderin JD; Wu M; Keshri P; Zhang X; Schwartz MP; Hamers RJ; Rotello VM; Murphy CJ; Cui Q; Pedersen JA
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27854-27861. PubMed ID: 33106430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents.
    Thompson N; Thompson G; Cole CD; Cotten M; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1245-54. PubMed ID: 11509341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gramicidin ion channel: a model membrane protein.
    Kelkar DA; Chattopadhyay A
    Biochim Biophys Acta; 2007 Sep; 1768(9):2011-25. PubMed ID: 17572379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
    Cole CD; Frost AS; Thompson N; Cotten M; Cross TA; Busath DD
    Biophys J; 2002 Oct; 83(4):1974-86. PubMed ID: 12324416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic coupling of lipid bilayer energetics to channel function.
    Goforth RL; Chi AK; Greathouse DV; Providence LL; Koeppe RE; Andersen OS
    J Gen Physiol; 2003 May; 121(5):477-93. PubMed ID: 12719487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
    Coalson RD; Kurnikova MG
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):81-93. PubMed ID: 15816174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.
    Cárdenas AE; Coalson RD; Kurnikova MG
    Biophys J; 2000 Jul; 79(1):80-93. PubMed ID: 10866939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphile regulation of ion channel function by changes in the bilayer spring constant.
    Lundbaek JA; Koeppe RE; Andersen OS
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15427-30. PubMed ID: 20713738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.
    Basu I; Chattopadhyay A; Mukhopadhyay C
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):328-38. PubMed ID: 24125683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of an ion channel in lipid bilayers: implicit solvent model calculations with gramicidin.
    Bransburg-Zabary S; Kessel A; Gutman M; Ben-Tal N
    Biochemistry; 2002 Jun; 41(22):6946-54. PubMed ID: 12033927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of ion conduction through the gramicidin channel.
    Allen TW; Andersen OS; Roux B
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):117-22. PubMed ID: 14691245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.