BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20550982)

  • 21. [An experimental system of induced-current EIT].
    Dong X; You F; Qin M; Shi X; Liu R; Xiang H; Fu F; Cui W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Jun; 21(3):416-9. PubMed ID: 15250146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography.
    Brunner P; Merwa R; Missner A; Rosell J; Hollaus K; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S237-48. PubMed ID: 16636414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images.
    Khang HS; Lee BI; Oh SH; Woo EJ; Lee SY; Cho MH; Kwon O; Yoon JR; Seo JK
    IEEE Trans Med Imaging; 2002 Jun; 21(6):695-702. PubMed ID: 12166867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
    Ahsan-Ul-Ambia ; Toda S; Takemae T; Kosugi Y; Hongo M
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):400-6. PubMed ID: 19272885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-frequency electrical impedance tomography system with automatic self-calibration for long-term monitoring.
    Wi H; Sohal H; McEwan AL; Woo EJ; Oh TI
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):119-28. PubMed ID: 24681925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of two EIT systems suitable for imaging impedance changes in epilepsy.
    Fabrizi L; McEwan A; Oh T; Woo EJ; Holder DS
    Physiol Meas; 2009 Jun; 30(6):S103-20. PubMed ID: 19491447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo.
    Mayer M; Brunner P; Merwa R; Smolle-Jüttner FM; Maier A; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S93-101. PubMed ID: 16636423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EIT reconstructions and Faddeev solutions for a numerically simulated phantom chest.
    Mueller JL
    Biomed Sci Instrum; 2004; 40():213-8. PubMed ID: 15133960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. First section: general concepts and hardware.
    Rigaud B; Morucci JP
    Crit Rev Biomed Eng; 1996; 24(4-6):467-597. PubMed ID: 9196886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of weighted frequency-difference EIT using a three-dimensional hemisphere model and phantom.
    Ahn S; Oh TI; Jun SC; Seo JK; Woo EJ
    Physiol Meas; 2011 Oct; 32(10):1663-80. PubMed ID: 21904022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental justification for using 3D conductivity reconstructions in electrical impedance tomography.
    Halter RJ; Hartov A; Paulsen KD
    Physiol Meas; 2007 Jul; 28(7):S115-27. PubMed ID: 17664629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new head phantom with realistic shape and spatially varying skull resistivity distribution.
    Li JB; Tang C; Dai M; Liu G; Shi XT; Yang B; Xu CH; Fu F; You FS; Tang MX; Dong XZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):254-63. PubMed ID: 24196845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Kalman filter approach to track fast impedance changes in electrical impedance tomography.
    Vauhkonen M; Karjalainen PA; Kaipio JP
    IEEE Trans Biomed Eng; 1998 Apr; 45(4):486-93. PubMed ID: 9556965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and calibration of a compact multi-frequency EIT system for acute stroke imaging.
    McEwan A; Romsauerova A; Yerworth R; Horesh L; Bayford R; Holder D
    Physiol Meas; 2006 May; 27(5):S199-210. PubMed ID: 16636411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Image reconstruction in electrical impedance tomography based on genetic algorithm].
    Hou W; Mo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):107-10. PubMed ID: 12744177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions.
    Babaeizadeh S; Brooks DH
    IEEE Trans Med Imaging; 2007 May; 26(5):637-47. PubMed ID: 17518058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-cost multifrequency electrical impedance-based system (MFEIBS) for clinical imaging: design and performance evaluation.
    Singh G; Anand S; Lall B; Srivastava A; Singh V
    J Med Eng Technol; 2018 May; 42(4):274-289. PubMed ID: 30019971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.