These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20550983)

  • 1. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues.
    Guo L; Meacham KW; Hochman S; DeWeerth SP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2485-94. PubMed ID: 20550983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDMS-based conformable microelectrode arrays with selectable novel 3-D microelectrode geometries for surface stimulation and recording.
    Guo L; Deweerth SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1623-6. PubMed ID: 19964009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.
    Liang Guo ; Guvanasen GS; Xi Liu ; Tuthill C; Nichols TR; DeWeerth SP
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):1-10. PubMed ID: 23853274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plateau-Shaped Flexible Polymer Microelectrode Array for Neural Recording.
    Kim JM; Im C; Lee WR
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology.
    Guo L; Deweerth SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1619-22. PubMed ID: 19964008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A largely deformable surface type neural electrode array based on PDMS.
    Chou N; Yoo S; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):544-53. PubMed ID: 22907973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation.
    Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP
    J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord.
    Meacham KW; Giuly RJ; Guo L; Hochman S; DeWeerth SP
    Biomed Microdevices; 2008 Apr; 10(2):259-69. PubMed ID: 17914674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of polydimethylsiloxane (PDMS) - based multielectrode array for neural interface.
    Kim JM; Oh DR; Sanchez J; Kim SH; Seo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1716-9. PubMed ID: 24110037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling limitations of laser-fabricated nerve electrode arrays.
    Henle C; Schuettler M; Ordonez JS; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4208-11. PubMed ID: 19163640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D flexible nano-textured high-density microelectrode arrays for high-performance neuro-monitoring and neuro-stimulation.
    Gabran SR; Salam MT; Dian J; El-Hayek Y; Perez Velazquez JL; Genov R; Carlen PL; Salama MM; Mansour RR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1072-82. PubMed ID: 24876130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an intrafascicular neural interface for peripheral nerve implantation.
    Chou N; Kang Y; Kang HS; Yun JD; Chun W; Lee KJ; Moon H; Choi IK; Byun D; Song I; Moon DJ; Moon JH; Lee BH; Kim J; You SK; Kim S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():847-850. PubMed ID: 28813926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing.
    Prasad A; Sanchez JC
    J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of surface modification on microelectrode arrays for in vitro cell culture.
    Lin SP; Chen JJ; Liao JD; Tzeng SF
    Biomed Microdevices; 2008 Feb; 10(1):99-111. PubMed ID: 17674208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces.
    Lacour SP; Benmerah S; Tarte E; FitzGerald J; Serra J; McMahon S; Fawcett J; Graudejus O; Yu Z; Morrison B
    Med Biol Eng Comput; 2010 Oct; 48(10):945-54. PubMed ID: 20535574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.