These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 20551212)
1. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: the evolution of pit membrane form and function. Pittermann J; Choat B; Jansen S; Stuart SA; Lynn L; Dawson TE Plant Physiol; 2010 Aug; 153(4):1919-31. PubMed ID: 20551212 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Delzon S; Douthe C; Sala A; Cochard H Plant Cell Environ; 2010 Dec; 33(12):2101-11. PubMed ID: 20636490 [TBL] [Abstract][Full Text] [Related]
3. Pit membrane structure is highly variable and accounts for a major resistance to water flow through tracheid pits in stems and roots of two boreal conifer species. Schulte PJ; Hacke UG; Schoonmaker AL New Phytol; 2015 Oct; 208(1):102-13. PubMed ID: 25944400 [TBL] [Abstract][Full Text] [Related]
4. A broad survey of hydraulic and mechanical safety in the xylem of conifers. Bouche PS; Larter M; Domec JC; Burlett R; Gasson P; Jansen S; Delzon S J Exp Bot; 2014 Aug; 65(15):4419-31. PubMed ID: 24916072 [TBL] [Abstract][Full Text] [Related]
5. Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Hacke UG; Jacobsen AL; Pratt RB Plant Cell Environ; 2009 Oct; 32(10):1324-33. PubMed ID: 19453480 [TBL] [Abstract][Full Text] [Related]
6. The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Scholz A; Rabaey D; Stein A; Cochard H; Smets E; Jansen S Tree Physiol; 2013 Jul; 33(7):684-94. PubMed ID: 23933827 [TBL] [Abstract][Full Text] [Related]
7. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. Brodribb TJ; Bowman DJ; Nichols S; Delzon S; Burlett R New Phytol; 2010 Oct; 188(2):533-42. PubMed ID: 20673281 [TBL] [Abstract][Full Text] [Related]
8. Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. Pittermann J; Limm E; Rico C; Christman MA New Phytol; 2011 Oct; 192(2):449-61. PubMed ID: 21749396 [TBL] [Abstract][Full Text] [Related]
9. Scaling of angiosperm xylem structure with safety and efficiency. Hacke UG; Sperry JS; Wheeler JK; Castro L Tree Physiol; 2006 Jun; 26(6):689-701. PubMed ID: 16510385 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. Choat B; Cobb AR; Jansen S New Phytol; 2008; 177(3):608-626. PubMed ID: 18086228 [TBL] [Abstract][Full Text] [Related]
11. Analysis of circular bordered pit function II. Gymnosperm tracheids with torus-margo pit membranes. Hacke UG; Sperry JS; Pittermann J Am J Bot; 2004 Mar; 91(3):386-400. PubMed ID: 21653394 [TBL] [Abstract][Full Text] [Related]
12. New insights into the mechanisms of water-stress-induced cavitation in conifers. Cochard H; Hölttä T; Herbette S; Delzon S; Mencuccini M Plant Physiol; 2009 Oct; 151(2):949-54. PubMed ID: 19641033 [TBL] [Abstract][Full Text] [Related]
13. Plasmodesmatal pores in the torus of bordered pit membranes affect cavitation resistance of conifer xylem. Jansen S; Lamy JB; Burlett R; Cochard H; Gasson P; Delzon S Plant Cell Environ; 2012 Jun; 35(6):1109-20. PubMed ID: 22220551 [TBL] [Abstract][Full Text] [Related]
14. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. Song Y; Poorter L; Horsting A; Delzon S; Sterck F J Exp Bot; 2022 Jan; 73(3):1033-1048. PubMed ID: 34626106 [TBL] [Abstract][Full Text] [Related]
15. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Liu YY; Song J; Wang M; Li N; Niu CY; Hao GY Tree Physiol; 2015 Dec; 35(12):1333-42. PubMed ID: 26209618 [TBL] [Abstract][Full Text] [Related]
16. A model of bubble growth leading to xylem conduit embolism. Hölttä T; Vesala T; Nikinmaa E J Theor Biol; 2007 Nov; 249(1):111-23. PubMed ID: 17706683 [TBL] [Abstract][Full Text] [Related]
17. Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Burgess SS; Pittermann J; Dawson TE Plant Cell Environ; 2006 Feb; 29(2):229-39. PubMed ID: 17080638 [TBL] [Abstract][Full Text] [Related]
18. [Divergence between ring- and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits.]. Yin XH; Hao GY Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):352-360. PubMed ID: 29692047 [TBL] [Abstract][Full Text] [Related]
19. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. Larter M; Pfautsch S; Domec JC; Trueba S; Nagalingum N; Delzon S New Phytol; 2017 Jul; 215(1):97-112. PubMed ID: 28378882 [TBL] [Abstract][Full Text] [Related]
20. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]