These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces. Linsmeier CE; Thelin J; Danielsen N Prog Brain Res; 2011; 194():181-9. PubMed ID: 21867803 [TBL] [Abstract][Full Text] [Related]
3. A floating metal microelectrode array for chronic implantation. Musallam S; Bak MJ; Troyk PR; Andersen RA J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683 [TBL] [Abstract][Full Text] [Related]
4. Biocompatible multichannel electrodes for long-term neurophysiological studies and clinical therapy--novel concepts and design. Schouenborg J Prog Brain Res; 2011; 194():61-70. PubMed ID: 21867794 [TBL] [Abstract][Full Text] [Related]
5. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106 [TBL] [Abstract][Full Text] [Related]
6. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems. Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016 [TBL] [Abstract][Full Text] [Related]
7. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Wei XF; Grill WM J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238 [TBL] [Abstract][Full Text] [Related]
8. A high-yield fabrication process for silicon neural probes. Oh SJ; Song JK; Kim JW; Kim SJ IEEE Trans Biomed Eng; 2006 Feb; 53(2):351-4. PubMed ID: 16485767 [TBL] [Abstract][Full Text] [Related]
9. An acute method for multielectrode recording from the interior of sulci and other deep brain areas. Purushothaman G; Scott BB; Bradley DC J Neurosci Methods; 2006 May; 153(1):86-94. PubMed ID: 16316688 [TBL] [Abstract][Full Text] [Related]
11. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262 [TBL] [Abstract][Full Text] [Related]
12. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures. Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069 [TBL] [Abstract][Full Text] [Related]
15. Microelectrode array for chronic deep-brain microstimulation and recording. McCreery D; Lossinsky A; Pikov V; Liu X IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580 [TBL] [Abstract][Full Text] [Related]
16. Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. Motta PS; Judy JW IEEE Trans Biomed Eng; 2005 May; 52(5):923-33. PubMed ID: 15887542 [TBL] [Abstract][Full Text] [Related]
17. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885 [TBL] [Abstract][Full Text] [Related]
18. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. Lee K; He J; Clement R; Massia S; Kim B Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854 [TBL] [Abstract][Full Text] [Related]
20. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo. Duan YY; Clark GM; Cowan RS Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]