These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 20552568)

  • 1. Performance of using multiple stepwise algorithms for variable selection.
    Wiegand RE
    Stat Med; 2010 Jul; 29(15):1647-59. PubMed ID: 20552568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bootstrap model selection had similar performance for selecting authentic and noise variables compared to backward variable elimination: a simulation study.
    Austin PC
    J Clin Epidemiol; 2008 Oct; 61(10):1009-17.e1. PubMed ID: 18539429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable selection for clustering with Gaussian mixture models.
    Maugis C; Celeux G; Martin-Magniette ML
    Biometrics; 2009 Sep; 65(3):701-9. PubMed ID: 19210744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality.
    Austin PC; Tu JV
    J Clin Epidemiol; 2004 Nov; 57(11):1138-46. PubMed ID: 15567629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sample size calculations for evaluating mediation.
    Vittinghoff E; Sen S; McCulloch CE
    Stat Med; 2009 Feb; 28(4):541-57. PubMed ID: 19065627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data.
    Gui J; Li H
    Bioinformatics; 2005 Jul; 21(13):3001-8. PubMed ID: 15814556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Bayesian model averaging and stepwise methods for model selection in logistic regression.
    Wang D; Zhang W; Bakhai A
    Stat Med; 2004 Nov; 23(22):3451-67. PubMed ID: 15505893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple approach to power and sample size calculations in logistic regression and Cox regression models.
    Vaeth M; Skovlund E
    Stat Med; 2004 Jun; 23(11):1781-92. PubMed ID: 15160408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comments on 'Performance of using multiple stepwise algorithms for variable selection' by Ryan E. Wiegand, Statistics in Medicine 2010; 29:1647-1659.
    Sauerbrei W; Royston P; Schumacher M
    Stat Med; 2011 Apr; 30(8):892-4; author reply 894-5. PubMed ID: 21432884
    [No Abstract]   [Full Text] [Related]  

  • 10. Relaxing the rule of ten events per variable in logistic and Cox regression.
    Vittinghoff E; McCulloch CE
    Am J Epidemiol; 2007 Mar; 165(6):710-8. PubMed ID: 17182981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stepwise model fitting and statistical inference: turning noise into signal pollution.
    Mundry R; Nunn CL
    Am Nat; 2009 Jan; 173(1):119-23. PubMed ID: 19049440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical approach to model selection through validation for censored survival data.
    Choi I; Wells BJ; Yu C; Kattan MW
    J Biomed Inform; 2011 Aug; 44(4):595-606. PubMed ID: 21335102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sliced inverse regression with regularizations.
    Li L; Yin X
    Biometrics; 2008 Mar; 64(1):124-31. PubMed ID: 17651455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple correspondence analysis in predictive logistic modelling: application to a living-donor kidney transplantation data.
    Almeida RM; Infantosi AF; Suassuna JH; Costa JC
    Comput Methods Programs Biomed; 2009 Aug; 95(2):116-28. PubMed ID: 19328584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating a positive false discovery rate for variable selection in pharmacogenetic studies.
    Li L; Hui S; Pennello G; Desta Z; Todd S; Nguyen A; Flockhart D
    J Biopharm Stat; 2007; 17(5):883-902. PubMed ID: 17885872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cox proportional hazards models have more statistical power than logistic regression models in cross-sectional genetic association studies.
    van der Net JB; Janssens AC; Eijkemans MJ; Kastelein JJ; Sijbrands EJ; Steyerberg EW
    Eur J Hum Genet; 2008 Sep; 16(9):1111-6. PubMed ID: 18382476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regression modeling strategies].
    Núñez E; Steyerberg EW; Núñez J
    Rev Esp Cardiol; 2011 Jun; 64(6):501-7. PubMed ID: 21531065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of matched case-control data in presence of nonignorable missing exposure.
    Sinha S; Maiti T
    Biometrics; 2008 Mar; 64(1):106-14. PubMed ID: 17573865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heritability, reliability of genetic evaluations and response to selection in proportional hazard models.
    Yazdi MH; Visscher PM; Ducrocq V; Thompson R
    J Dairy Sci; 2002 Jun; 85(6):1563-77. PubMed ID: 12146489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.