These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 20552569)

  • 1. The impact of dropouts on the analysis of dose-finding studies with recurrent event data.
    Akacha M; Benda N
    Stat Med; 2010 Jul; 29(15):1635-46. PubMed ID: 20552569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates.
    Salim A; Mackinnon A; Christensen H; Griffiths K
    Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choosing the analysis population in non-inferiority studies: per protocol or intent-to-treat.
    Matilde Sanchez M; Chen X
    Stat Med; 2006 Apr; 25(7):1169-81. PubMed ID: 16397861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling missingness for time-to-event data: a case study in osteoporosis.
    Neuenschwander B; Branson M
    J Biopharm Stat; 2004 Nov; 14(4):1005-19. PubMed ID: 15587977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the random-effects pattern mixture model with last-observation-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts.
    Siddiqui O; Ali MW
    J Biopharm Stat; 1998 Nov; 8(4):545-63. PubMed ID: 9855033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inference methods for saturated models in longitudinal clinical trials with incomplete binary data.
    Song JX
    Pharm Stat; 2006; 5(4):295-304. PubMed ID: 17128429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The analysis of incomplete data in the three-period two-treatment cross-over design for clinical trials.
    Richardson BA; Flack VF
    Stat Med; 1996 Jan; 15(2):127-43. PubMed ID: 8614750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial.
    Yang X; Shoptaw S
    Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of type I error rate associated with dose-group switching in a longitudinal Alzheimer trial.
    Habteab Ghebretinsae A; Molenberghs G; Dmitrienko A; Offen W; Sethuraman G
    J Biopharm Stat; 2014; 24(3):660-84. PubMed ID: 24697817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of varying the event generation process in simulation studies of statistical methods for recurrent events.
    Metcalfe C; Thompson SG
    Stat Med; 2006 Jan; 25(1):165-79. PubMed ID: 16217859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imputation strategies for missing continuous outcomes in cluster randomized trials.
    Taljaard M; Donner A; Klar N
    Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of two methods for the estimation of precision with incomplete longitudinal data, jointly modelled with a time-to-event outcome.
    Touloumi G; Babiker AG; Kenward MG; Pocock SJ; Darbyshire JH
    Stat Med; 2003 Oct; 22(20):3161-75. PubMed ID: 14518021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling placebo response in depression trials using a longitudinal model with informative dropout.
    Gomeni R; Lavergne A; Merlo-Pich E
    Eur J Pharm Sci; 2009 Jan; 36(1):4-10. PubMed ID: 19041717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intent-to-treat analysis for longitudinal studies with drop-outs.
    Little R; Yau L
    Biometrics; 1996 Dec; 52(4):1324-33. PubMed ID: 8962456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust tests for treatment effects based on censored recurrent event data observed over multiple periods.
    Cook RJ; Wei W; Yi GY
    Biometrics; 2005 Sep; 61(3):692-701. PubMed ID: 16135020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of pattern-mixture models to outcomes that are potentially missing not at random using pseudo maximum likelihood estimation.
    Shen C; Weissfeld L
    Biostatistics; 2005 Apr; 6(2):333-47. PubMed ID: 15772110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principal stratification designs to estimate input data missing due to death.
    Frangakis CE; Rubin DB; An MW; MacKenzie E
    Biometrics; 2007 Sep; 63(3):641-9; discussion 650-62. PubMed ID: 17824995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting event times in clinical trials when treatment arm is masked.
    Donovan JM; Elliott MR; Heitjan DF
    J Biopharm Stat; 2006 May; 16(3):343-56. PubMed ID: 16724489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed effects logistic regression models for longitudinal binary response data with informative drop-out.
    Ten Have TR; Kunselman AR; Pulkstenis EP; Landis JR
    Biometrics; 1998 Mar; 54(1):367-83. PubMed ID: 9544529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data.
    Albert PS; Follmann DA
    Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.