These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1692 related articles for article (PubMed ID: 20553227)

  • 1. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual macromolecule motion in a crowded living cell.
    Földes-Papp Z
    Curr Pharm Biotechnol; 2015; 16(1):1-2. PubMed ID: 25543662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous transport in the crowded world of biological cells.
    Höfling F; Franosch T
    Rep Prog Phys; 2013 Apr; 76(4):046602. PubMed ID: 23481518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion of proteins due to molecular crowding.
    Banks DS; Fradin C
    Biophys J; 2005 Nov; 89(5):2960-71. PubMed ID: 16113107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity.
    Földes-Papp Z; Baumann G
    Curr Pharm Biotechnol; 2011 May; 12(5):824-33. PubMed ID: 21446904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.
    Tsekouras K; Siegel AP; Day RN; Pressé S
    Biophys J; 2015 Jul; 109(1):7-17. PubMed ID: 26153697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.
    Marquez-Lago TT; Leier A; Burrage K
    IET Syst Biol; 2012 Aug; 6(4):134-42. PubMed ID: 23039694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions.
    Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R
    Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the origin of anomalous diffusion in crowded fluids.
    Szymanski J; Weiss M
    Phys Rev Lett; 2009 Jul; 103(3):038102. PubMed ID: 19659323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational and rotational motions of proteins in a protein crowded environment.
    Zorrilla S; Hink MA; Visser AJ; Lillo MP
    Biophys Chem; 2007 Feb; 125(2-3):298-305. PubMed ID: 17007994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-time random-walk model for anomalous diffusion in expanding media.
    Le Vot F; Abad E; Yuste SB
    Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring fast dynamics in solutions and cells with a laser scanning microscope.
    Digman MA; Brown CM; Sengupta P; Wiseman PW; Horwitz AR; Gratton E
    Biophys J; 2005 Aug; 89(2):1317-27. PubMed ID: 15908582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous behavior in length distributions of 3D random Brownian walks and measured photon count rates within observation volumes of single-molecule trajectories in fluorescence fluctuation microscopy.
    Baumann G; Gryczynski I; Földes-Papp Z
    Opt Express; 2010 Aug; 18(17):17883-96. PubMed ID: 20721175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants.
    Klann MT; Lapin A; Reuss M
    BMC Syst Biol; 2011 May; 5():71. PubMed ID: 21569565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of cellular functions by multipoint fluorescence correlation spectroscopy.
    Takahashi Y; Sawada R; Ishibashi K; Mikuni S; Kinjo M
    Curr Pharm Biotechnol; 2005 Apr; 6(2):159-65. PubMed ID: 15853694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crowding effects on diffusion in solutions and cells.
    Dix JA; Verkman AS
    Annu Rev Biophys; 2008; 37():247-63. PubMed ID: 18573081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random death process for the regularization of subdiffusive fractional equations.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of proteins in an environment crowded by surfactant micelles: anomalous versus normal diffusion.
    Szymański J; Patkowski A; Gapiński J; Wilk A; Hołyst R
    J Phys Chem B; 2006 Apr; 110(14):7367-73. PubMed ID: 16599511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 85.