BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1518 related articles for article (PubMed ID: 20553227)

  • 1. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual macromolecule motion in a crowded living cell.
    Földes-Papp Z
    Curr Pharm Biotechnol; 2015; 16(1):1-2. PubMed ID: 25543662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous transport in the crowded world of biological cells.
    Höfling F; Franosch T
    Rep Prog Phys; 2013 Apr; 76(4):046602. PubMed ID: 23481518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion of proteins due to molecular crowding.
    Banks DS; Fradin C
    Biophys J; 2005 Nov; 89(5):2960-71. PubMed ID: 16113107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity.
    Földes-Papp Z; Baumann G
    Curr Pharm Biotechnol; 2011 May; 12(5):824-33. PubMed ID: 21446904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.
    Tsekouras K; Siegel AP; Day RN; Pressé S
    Biophys J; 2015 Jul; 109(1):7-17. PubMed ID: 26153697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology.
    Marquez-Lago TT; Leier A; Burrage K
    IET Syst Biol; 2012 Aug; 6(4):134-42. PubMed ID: 23039694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions.
    Klett K; Cherstvy AG; Shin J; Sokolov IM; Metzler R
    Phys Rev E; 2021 Dec; 104(6-1):064603. PubMed ID: 35030844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidating the origin of anomalous diffusion in crowded fluids.
    Szymanski J; Weiss M
    Phys Rev Lett; 2009 Jul; 103(3):038102. PubMed ID: 19659323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational and rotational motions of proteins in a protein crowded environment.
    Zorrilla S; Hink MA; Visser AJ; Lillo MP
    Biophys Chem; 2007 Feb; 125(2-3):298-305. PubMed ID: 17007994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-time random-walk model for anomalous diffusion in expanding media.
    Le Vot F; Abad E; Yuste SB
    Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring fast dynamics in solutions and cells with a laser scanning microscope.
    Digman MA; Brown CM; Sengupta P; Wiseman PW; Horwitz AR; Gratton E
    Biophys J; 2005 Aug; 89(2):1317-27. PubMed ID: 15908582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous behavior in length distributions of 3D random Brownian walks and measured photon count rates within observation volumes of single-molecule trajectories in fluorescence fluctuation microscopy.
    Baumann G; Gryczynski I; Földes-Papp Z
    Opt Express; 2010 Aug; 18(17):17883-96. PubMed ID: 20721175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants.
    Klann MT; Lapin A; Reuss M
    BMC Syst Biol; 2011 May; 5():71. PubMed ID: 21569565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of cellular functions by multipoint fluorescence correlation spectroscopy.
    Takahashi Y; Sawada R; Ishibashi K; Mikuni S; Kinjo M
    Curr Pharm Biotechnol; 2005 Apr; 6(2):159-65. PubMed ID: 15853694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crowding effects on diffusion in solutions and cells.
    Dix JA; Verkman AS
    Annu Rev Biophys; 2008; 37():247-63. PubMed ID: 18573081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random death process for the regularization of subdiffusive fractional equations.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of proteins in an environment crowded by surfactant micelles: anomalous versus normal diffusion.
    Szymański J; Patkowski A; Gapiński J; Wilk A; Hołyst R
    J Phys Chem B; 2006 Apr; 110(14):7367-73. PubMed ID: 16599511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 76.