BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 205533)

  • 1. Changes in cyclic AMP levels during development in Myxococcus xanthus.
    Yajko DM; Zusman DR
    J Bacteriol; 1978 Mar; 133(3):1540-2. PubMed ID: 205533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic and mutational analyses of a class II 3',5'-cyclic nucleotide phosphodiesterase, PdeE, from Myxococcus xanthus.
    Kimura Y; Yoshimi M; Takata G
    J Bacteriol; 2011 Apr; 193(8):2053-7. PubMed ID: 21317337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of development in Myxococcus xanthus: effect of 3':5'-cyclic AMP, ADP, and nutrition.
    Campos JM; Zusman DR
    Proc Natl Acad Sci U S A; 1975 Feb; 72(2):518-22. PubMed ID: 164657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphogenesis in Myxococcus xanthus and Myxococcus virescens Myxobacterales.
    Parish JH; Wedgwood KR; Herries DG
    Arch Microbiol; 1976 Apr; 107(3):343-51. PubMed ID: 58646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotides, cyclic nucleotide phosphodiesterase, and development in Myxococcus xanthus.
    McCurdy HD; Ho J; Dobson WJ
    Can J Microbiol; 1978 Dec; 24(12):1475-81. PubMed ID: 218712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of protein production in Myxococcus xanthus during spore formation induced by glycerol, dimethyl sulfoxide, and phenethyl alcohol.
    Komano T; Inouye S; Inouye M
    J Bacteriol; 1980 Dec; 144(3):1076-82. PubMed ID: 6160140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutants of Myxococcus xanthus insensitive to glycerol-induced myxospore formation.
    Burchard RP; Parish JH
    Arch Microbiol; 1975 Aug; 104(3):289-92. PubMed ID: 53038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of dimethylsulfoxide on cyclic AMP accumulation, lipolysis and glucose metabolism of fat cells.
    Wieser PB; Zeiger MA; Fain JN
    Biochem Pharmacol; 1977 Apr; 26(8):775-78. PubMed ID: 193516
    [No Abstract]   [Full Text] [Related]  

  • 9. [Fluctuations in the level of cyclic AMP and activities of adenylate cyclase and cyclic-AMP phosphodiesterase in synchronous cultures of the prokaryote Nocardia restricta (author's transl)].
    Lefebvre G; Martin N; Schneider F; Raval G; Gay R
    Biochim Biophys Acta; 1978 May; 540(2):221-30. PubMed ID: 207351
    [No Abstract]   [Full Text] [Related]  

  • 10. An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication.
    Marcos-Torres FJ; Volz C; Müller R
    Nat Commun; 2020 Nov; 11(1):5563. PubMed ID: 33149152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation of macromolecules during development in Myxococcus xanthus.
    Panasenko SM
    J Bacteriol; 1985 Nov; 164(2):495-500. PubMed ID: 3932324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mediation of polyamine-induced decrease of cyclic AMP content by cyclic AMP-phosphodiesterase in chick heart cell cultures.
    Clô C; Tantini B; Coccolini MN; Caldarera CM
    J Mol Cell Cardiol; 1981 Aug; 13(8):773-6. PubMed ID: 6267306
    [No Abstract]   [Full Text] [Related]  

  • 13. Theoretical analyses of the functioning of the high- and low-Km cyclic nucleotide phosphodiesterases in the regulation of the concentration of adenosine 3',5'-cyclic monophosphate in animal cells.
    Fell DA
    J Theor Biol; 1980 May; 84(2):361-85. PubMed ID: 6251314
    [No Abstract]   [Full Text] [Related]  

  • 14. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus.
    McBride MJ; Zusman DR
    J Bacteriol; 1989 Nov; 171(11):6383-6. PubMed ID: 2509436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimethyl sulfoxide-induced augmentation of adenosine-adenylate cyclase response of pig skin epidermis.
    Watanabe M; Iizuka H
    Arch Dermatol Res; 1986; 278(6):470-3. PubMed ID: 2431659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin controls intracellular cyclic AMP concentrations in hepatocytes by activating specific cyclic AMP phosphodiesterases: phosphorylation of the peripheral plasma membrane enzyme.
    Houslay MD; Wallace AV; Marchmont RJ; Martin BR; Heyworth CM
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():159-76. PubMed ID: 6326521
    [No Abstract]   [Full Text] [Related]  

  • 17. Theoretical studies of the control of adenosine 3':5'-cyclic monophosphate by the high- and low-Km phosphodiesterases [proceedings].
    Fell DA
    Biochem Soc Trans; 1979 Oct; 7(5):1039-40. PubMed ID: 229021
    [No Abstract]   [Full Text] [Related]  

  • 18. Regulation of intracellular cyclic AMP concentrations in hepatocytes involves the integrated activation and desensitization of adenylyl cyclase coupled with the action and activation of specific isoforms of cyclic AMP phosphodiesterase.
    Houslay MD; Griffiths SL; Horton YM; Livingstone C; Lobban M; Macdonald F; Morris N; Pryde J; Scotland G; Shakur Y
    Biochem Soc Trans; 1992 Feb; 20(1):140-6. PubMed ID: 1321746
    [No Abstract]   [Full Text] [Related]  

  • 19. Cyclic adenosine 3',5'-monophosphate binding protein in developing myxospores of Myxococcus xanthus.
    Orlowski M
    Can J Microbiol; 1980 Aug; 26(8):905-11. PubMed ID: 6257359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila cyclic nucleotide phosphodiesterases.
    Davis RL; Kauvar LM
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():393-402. PubMed ID: 6326533
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.