These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Lischper M; Beuck S; Thanabalasundaram G; Pieper C; Galla HJ Brain Res; 2010 Apr; 1326():114-27. PubMed ID: 20197061 [TBL] [Abstract][Full Text] [Related]
5. Effects of pericytes and various cytokines on integrity of endothelial monolayer originated from blood-nerve barrier: an in vitro study. Iwasaki T; Kanda T; Mizusawa H J Med Dent Sci; 1999 Mar; 46(1):31-40. PubMed ID: 12160211 [TBL] [Abstract][Full Text] [Related]
6. Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase C-β. Shao B; Bayraktutan U Diabetes Obes Metab; 2013 Nov; 15(11):993-9. PubMed ID: 23617822 [TBL] [Abstract][Full Text] [Related]
10. Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. Al Ahmad A; Gassmann M; Ogunshola OO J Cell Physiol; 2009 Mar; 218(3):612-22. PubMed ID: 19016245 [TBL] [Abstract][Full Text] [Related]
11. Methods to assess pericyte-endothelial cell interactions in a coculture model. Thanabalasundaram G; El-Gindi J; Lischper M; Galla HJ Methods Mol Biol; 2011; 686():379-99. PubMed ID: 21082383 [TBL] [Abstract][Full Text] [Related]
12. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Pieper C; Pieloch P; Galla HJ Brain Res; 2013 Aug; 1524():1-11. PubMed ID: 23769734 [TBL] [Abstract][Full Text] [Related]
13. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Shimizu F; Sano Y; Tominaga O; Maeda T; Abe MA; Kanda T Neurobiol Aging; 2013 Jul; 34(7):1902-12. PubMed ID: 23428182 [TBL] [Abstract][Full Text] [Related]
14. Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. Hatherell K; Couraud PO; Romero IA; Weksler B; Pilkington GJ J Neurosci Methods; 2011 Aug; 199(2):223-9. PubMed ID: 21609734 [TBL] [Abstract][Full Text] [Related]
15. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. Gu Y; Zheng G; Xu M; Li Y; Chen X; Zhu W; Tong Y; Chung SK; Liu KJ; Shen J J Neurochem; 2012 Jan; 120(1):147-56. PubMed ID: 22007835 [TBL] [Abstract][Full Text] [Related]
16. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869 [TBL] [Abstract][Full Text] [Related]
17. Tyrosine phosphatase inhibition induces loss of blood-brain barrier integrity by matrix metalloproteinase-dependent and -independent pathways. Lohmann C; Krischke M; Wegener J; Galla HJ Brain Res; 2004 Jan; 995(2):184-96. PubMed ID: 14672808 [TBL] [Abstract][Full Text] [Related]
19. The interactions between brain microvascular endothelial cells and mesenchymal stem cells under hypoxic conditions. Liu K; Chi L; Guo L; Liu X; Luo C; Zhang S; He G Microvasc Res; 2008 Jan; 75(1):59-67. PubMed ID: 17662311 [TBL] [Abstract][Full Text] [Related]
20. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Perrière N; Yousif S; Cazaubon S; Chaverot N; Bourasset F; Cisternino S; Declèves X; Hori S; Terasaki T; Deli M; Scherrmann JM; Temsamani J; Roux F; Couraud PO Brain Res; 2007 May; 1150():1-13. PubMed ID: 17434463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]