BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 20554197)

  • 1. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light.
    Xing D; Cheng S; Regan JM; Logan BE
    Biosens Bioelectron; 2009 Sep; 25(1):105-11. PubMed ID: 19574034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.
    Call DF; Logan BE
    Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation.
    Hou B; Sun J; Hu Y
    Appl Microbiol Biotechnol; 2011 May; 90(4):1563-72. PubMed ID: 21468708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing.
    Lee TK; Van Doan T; Yoo K; Choi S; Kim C; Park J
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2335-43. PubMed ID: 20532761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes.
    Liu W; Wang A; Cheng S; Logan BE; Yu H; Deng Y; Nostrand JD; Wu L; He Z; Zhou J
    Environ Sci Technol; 2010 Oct; 44(19):7729-35. PubMed ID: 20831218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC).
    Liu W; Wang A; Sun D; Ren N; Zhang Y; Zhou J
    J Biotechnol; 2012 Feb; 157(4):628-32. PubMed ID: 21939699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint.
    Wei J; Liang P; Cao X; Huang X
    Environ Sci Technol; 2010 Apr; 44(8):3187-91. PubMed ID: 20345152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions.
    de Cárcer DA; Ha PT; Jang JK; Chang IS
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):605-12. PubMed ID: 20922377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.
    Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS
    Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.