BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20554254)

  • 1. Crosstalk between replicative and translesional DNA polymerases: PDIP38 interacts directly with Poleta.
    Tissier A; Janel-Bintz R; Coulon S; Klaile E; Kannouche P; Fuchs RP; Cordonnier AM
    DNA Repair (Amst); 2010 Aug; 9(8):922-8. PubMed ID: 20554254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ubiquitin-binding domain of DNA polymerase η directly binds to DNA clamp PCNA and regulates translesion DNA synthesis.
    Manohar K; Khandagale P; Patel SK; Sahu JK; Acharya N
    J Biol Chem; 2022 Feb; 298(2):101506. PubMed ID: 34929163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translesion DNA polymerases in eukaryotes: what makes them tick?
    Vaisman A; Woodgate R
    Crit Rev Biochem Mol Biol; 2017 Jun; 52(3):274-303. PubMed ID: 28279077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides.
    Kobayashi K; Guilliam TA; Tsuda M; Yamamoto J; Bailey LJ; Iwai S; Takeda S; Doherty AJ; Hirota K
    Cell Cycle; 2016 Aug; 15(15):1997-2008. PubMed ID: 27230014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WRN exonuclease imparts high fidelity on translesion synthesis by Y family DNA polymerases.
    Yoon JH; Sellamuthu K; Prakash L; Prakash S
    Genes Dev; 2024 Apr; 38(5-6):213-232. PubMed ID: 38503516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM reveals conformational flexibility in apo DNA polymerase ζ.
    Du Truong C; Craig TA; Cui G; Botuyan MV; Serkasevich RA; Chan KY; Mer G; Chiu PL; Kumar R
    J Biol Chem; 2021 Aug; 297(2):100912. PubMed ID: 34174285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RFWD3 and translesion DNA polymerases contribute to PCNA modification-dependent DNA damage tolerance.
    Kanao R; Kawai H; Taniguchi T; Takata M; Masutani C
    Life Sci Alliance; 2022 Jul; 5(12):. PubMed ID: 35905994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead compound profiling for small molecule inhibitors of the REV1-CT/RIR Translesion synthesis Protein-Protein interaction.
    Zaino AM; Dash RC; James SJ; MacGilvary N; Crompton A; McPherson KS; Stanzione M; Korzhnev DM; Dyson NJ; Chatterjee N; Cantor SB; Hadden MK
    Bioorg Med Chem; 2024 May; 106():117755. PubMed ID: 38749343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Y-family DNA polymerases in mammalian cells.
    Guo C; Kosarek-Stancel JN; Tang TS; Friedberg EC
    Cell Mol Life Sci; 2009 Jul; 66(14):2363-81. PubMed ID: 19367366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights into the role of translesion synthesis polymerase in DNA incorporation and bypass of 5-fluorouracil in colorectal cancer.
    Averill JR; Lin JC; Jung J; Jung H
    Nucleic Acids Res; 2024 May; 52(8):4295-4312. PubMed ID: 38416579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM structure of the Rev1-Polζ holocomplex reveals the mechanism of their cooperativity in translesion DNA synthesis.
    Malik R; Johnson RE; Ubarretxena-Belandia I; Prakash L; Prakash S; Aggarwal AK
    Nat Struct Mol Biol; 2024 May; ():. PubMed ID: 38720088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle.
    Hedglin M; Benkovic SJ
    Chem Rev; 2017 Jun; 117(12):7857-7877. PubMed ID: 28497687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional screening reveals HORMAD1-driven gene dependencies associated with translesion synthesis and replication stress tolerance.
    Tarantino D; Walker C; Weekes D; Pemberton H; Davidson K; Torga G; Frankum J; Mendes-Pereira AM; Prince C; Ferro R; Brough R; Pettitt SJ; Lord CJ; Grigoriadis A; Nj Tutt A
    Oncogene; 2022 Aug; 41(32):3969-3977. PubMed ID: 35768547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PolDIP2 interacts with human PrimPol and enhances its DNA polymerase activities.
    Guilliam TA; Bailey LJ; Brissett NC; Doherty AJ
    Nucleic Acids Res; 2016 Apr; 44(7):3317-29. PubMed ID: 26984527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDIP38 is translocated to the spliceosomes/nuclear speckles in response to UV-induced DNA damage and is required for UV-induced alternative splicing of MDM2.
    Wong A; Zhang S; Mordue D; Wu JM; Zhang Z; Darzynkiewicz Z; Lee EY; Lee MY
    Cell Cycle; 2013 Oct; 12(19):3184-93. PubMed ID: 23989611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts.
    Brown DI; Lassègue B; Lee M; Zafari R; Long JS; Saavedra HI; Griendling KK
    PLoS One; 2014; 9(5):e96657. PubMed ID: 24797518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol η in response to oxidative DNA damage in human cells.
    Zlatanou A; Despras E; Braz-Petta T; Boubakour-Azzouz I; Pouvelle C; Stewart GS; Nakajima S; Yasui A; Ishchenko AA; Kannouche PL
    Mol Cell; 2011 Aug; 43(4):649-62. PubMed ID: 21855803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation and Modulation of Human DNA Polymerase δ Activity and Function.
    Lee MYWT; Wang X; Zhang S; Zhang Z; Lee EYC
    Genes (Basel); 2017 Jul; 8(7):. PubMed ID: 28737709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polymerase δ-interacting protein family and their emerging roles in diseases.
    Huang P; Wu L; Zhu N; Zhao H; Du J
    Front Med (Lausanne); 2022; 9():1026931. PubMed ID: 36425112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Poldip2 knockout mice: Avoiding incorrect gene targeting.
    Lassègue B; Kumar S; Mandavilli R; Wang K; Tsai M; Kang DW; Demos C; Hernandes MS; San Martín A; Taylor WR; Jo H; Griendling KK
    PLoS One; 2021; 16(12):e0247261. PubMed ID: 34928942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.