BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20554282)

  • 1. Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions.
    Shi X; Liu XS; Wang X; Guo XE; Niebur GL
    J Biomech; 2010 Sep; 43(13):2460-6. PubMed ID: 20554282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone.
    Shi X; Liu XS; Wang X; Guo XE; Niebur GL
    Bone; 2010 May; 46(5):1260-6. PubMed ID: 20149908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure Determines Apparent-Level Mechanics Despite Tissue-Level Anisotropy and Heterogeneity of Individual Plates and Rods in Normal Human Trabecular Bone.
    Yu YE; Hu YJ; Zhou B; Wang J; Guo XE
    J Bone Miner Res; 2021 Sep; 36(9):1796-1807. PubMed ID: 33989436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.
    Niebur GL; Yuen JC; Burghardt AJ; Keaveny TM
    J Biomech; 2001 May; 34(5):699-706. PubMed ID: 11311712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone.
    Shi X; Wang X; Niebur GL
    Ann Biomed Eng; 2009 Feb; 37(2):354-62. PubMed ID: 19082893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.
    Liu XS; Bevill G; Keaveny TM; Sajda P; Guo XE
    J Biomech; 2009 Feb; 42(3):249-56. PubMed ID: 19101672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Tissue Mineral Density in Plate- and Rod-like Trabeculae of Human Trabecular Bone.
    Wang J; Kazakia GJ; Zhou B; Shi XT; Guo XE
    J Bone Miner Res; 2015 Sep; 30(9):1641-50. PubMed ID: 25736715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.
    Liu XS; Sajda P; Saha PK; Wehrli FW; Bevill G; Keaveny TM; Guo XE
    J Bone Miner Res; 2008 Feb; 23(2):223-35. PubMed ID: 17907921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in human trabecular bone: Relationship between microstructural stress and strain and damage morphology.
    Green JO; Nagaraja S; Diab T; Vidakovic B; Guldberg RE
    J Biomech; 2011 Aug; 44(12):2279-85. PubMed ID: 21724189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone.
    Liu XS; Sajda P; Saha PK; Wehrli FW; Guo XE
    J Bone Miner Res; 2006 Oct; 21(10):1608-17. PubMed ID: 16995816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of vertical trabeculae on the compressive strength of the human vertebra.
    Fields AJ; Lee GL; Liu XS; Jekir MG; Guo XE; Keaveny TM
    J Bone Miner Res; 2011 Feb; 26(2):263-9. PubMed ID: 20715186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear strength behavior of human trabecular bone.
    Sanyal A; Gupta A; Bayraktar HH; Kwon RY; Keaveny TM
    J Biomech; 2012 Oct; 45(15):2513-9. PubMed ID: 22884967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone.
    Liu XS; Zhang XH; Guo XE
    Bone; 2009 Aug; 45(2):158-63. PubMed ID: 19379849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.
    Vanderoost J; Jaecques SV; Van der Perre G; Boonen S; D'hooge J; Lauriks W; van Lenthe GH
    J Biomech; 2011 May; 44(8):1566-72. PubMed ID: 21414627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone.
    Wang J; Zhou B; Liu XS; Fields AJ; Sanyal A; Shi X; Adams M; Keaveny TM; Guo XE
    Bone; 2015 Mar; 72():71-80. PubMed ID: 25460571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical osteoporosis models using composite finite elements: a parameter study.
    Wolfram U; Schwen LO; Simon U; Rumpf M; Wilke HJ
    J Biomech; 2009 Sep; 42(13):2205-9. PubMed ID: 19643420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One year of alendronate treatment lowers microstructural stresses associated with trabecular microdamage initiation.
    O'Neal JM; Diab T; Allen MR; Vidakovic B; Burr DB; Guldberg RE
    Bone; 2010 Aug; 47(2):241-7. PubMed ID: 20483387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.