These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20554848)

  • 1. Acquisition of an acoustic template leads to refinement of song motor gestures.
    Méndez JM; Dall'Asén AG; Cooper BG; Goller F
    J Neurophysiol; 2010 Aug; 104(2):984-93. PubMed ID: 20554848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong.
    Mencio C; Kuberan B; Goller F
    J Neurophysiol; 2017 Feb; 117(2):637-645. PubMed ID: 27852738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulations of sensory experiences during development reveal mechanisms underlying vocal learning biases in zebra finches.
    James LS; Davies R; Mori C; Wada K; Sakata JT
    Dev Neurobiol; 2020 Mar; 80(3-4):132-146. PubMed ID: 32330360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Producing song: the vocal apparatus.
    Suthers RA; Zollinger SA
    Ann N Y Acad Sci; 2004 Jun; 1016():109-29. PubMed ID: 15313772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional bilateral muscle control of vocal output in the songbird syrinx.
    Méndez JM; Goller F
    J Neurophysiol; 2020 Dec; 124(6):1857-1874. PubMed ID: 33026896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superfast vocal muscles control song production in songbirds.
    Elemans CP; Mead AF; Rome LC; Goller F
    PLoS One; 2008 Jul; 3(7):e2581. PubMed ID: 18612467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial muting leads to age-dependent modification of motor patterns underlying crystallized zebra finch song.
    Cooper BG; Goller F
    J Neurobiol; 2004 Dec; 61(3):317-32. PubMed ID: 15389688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupting vagal feedback affects birdsong motor control.
    Méndez JM; Dall'asén AG; Goller F
    J Exp Biol; 2010 Dec; 213(Pt 24):4193-204. PubMed ID: 21113000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.
    Plummer EM; Goller F
    J Exp Biol; 2008 Jan; 211(Pt 1):66-78. PubMed ID: 18083734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.
    Veit L; Aronov D; Fee MS
    J Neurophysiol; 2011 Oct; 106(4):1747-65. PubMed ID: 21697438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.
    Srivastava KH; Elemans CP; Sober SJ
    J Neurosci; 2015 Oct; 35(42):14183-94. PubMed ID: 26490859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introductory gestures before songbird vocal displays are shaped by learning and biological predispositions.
    Kalra S; Yawatkar V; James LS; Sakata JT; Rajan R
    Proc Biol Sci; 2021 Jan; 288(1943):20202796. PubMed ID: 33468007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syringeal specialization of frequency control during song production in the Bengalese finch (Lonchura striata domestica).
    Secora KR; Peterson JR; Urbano CM; Chung B; Okanoya K; Cooper BG
    PLoS One; 2012; 7(3):e34135. PubMed ID: 22479543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smooth operator: avoidance of subharmonic bifurcations through mechanical mechanisms simplifies song motor control in adult zebra finches.
    Elemans CP; Laje R; Mindlin GB; Goller F
    J Neurosci; 2010 Oct; 30(40):13246-53. PubMed ID: 20926650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hormonal acceleration of song development illuminates motor control mechanism in canaries.
    Alliende JA; Méndez JM; Goller F; Mindlin GB
    Dev Neurobiol; 2010 Dec; 70(14):943-60. PubMed ID: 20812319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic reconstruction of physiological gestures used in a model of birdsong production.
    Boari S; Perl YS; Amador A; Margoliash D; Mindlin GB
    J Neurophysiol; 2015 Nov; 114(5):2912-22. PubMed ID: 26378204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral mechanisms for vocal production in birds - differences and similarities to human speech and singing.
    Riede T; Goller F
    Brain Lang; 2010 Oct; 115(1):69-80. PubMed ID: 20153887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in ultra-structures and electrophysiological properties in HVC of untutored and deafened Bengalese finches relation to normally reared birds: implications for song learning.
    Peng Z; Zhang X; Xi C; Zeng S; Liu N; Zuo M; Zhang X
    Brain Res Bull; 2012 Dec; 89(5-6):211-22. PubMed ID: 22982255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interplay of within-species perceptual predispositions and experience during song ontogeny in zebra finches (Taeniopygia guttata).
    ter Haar SM; Kaemper W; Stam K; Levelt CC; ten Cate C
    Proc Biol Sci; 2014 Dec; 281(1796):20141860. PubMed ID: 25320162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory units of motor production and song imitation in the zebra finch.
    Franz M; Goller F
    J Neurobiol; 2002 May; 51(2):129-41. PubMed ID: 11932954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.