These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 20554884)

  • 1. Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning.
    Steele CJ; Penhune VB
    J Neurosci; 2010 Jun; 30(24):8332-41. PubMed ID: 20554884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishable brain activation networks for short- and long-term motor skill learning.
    Floyer-Lea A; Matthews PM
    J Neurophysiol; 2005 Jul; 94(1):512-8. PubMed ID: 15716371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-free characterization of brain functional networks for motor sequence learning using fMRI.
    Tamás Kincses Z; Johansen-Berg H; Tomassini V; Bosnell R; Matthews PM; Beckmann CF
    Neuroimage; 2008 Feb; 39(4):1950-8. PubMed ID: 18053746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional bases for individual differences in motor learning.
    Tomassini V; Jbabdi S; Kincses ZT; Bosnell R; Douaud G; Pozzilli C; Matthews PM; Johansen-Berg H
    Hum Brain Mapp; 2011 Mar; 32(3):494-508. PubMed ID: 20533562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
    Gobel EW; Parrish TB; Reber PJ
    Neuroimage; 2011 Oct; 58(4):1150-7. PubMed ID: 21771663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The neural correlates of speech motor sequence learning.
    Segawa JA; Tourville JA; Beal DS; Guenther FH
    J Cogn Neurosci; 2015 Apr; 27(4):819-31. PubMed ID: 25313656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical re-evaluation of fMRI signatures of motor sequence learning.
    Berlot E; Popp NJ; Diedrichsen J
    Elife; 2020 May; 9():. PubMed ID: 32401193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation.
    Lin CJ; Yang HC; Knowlton BJ; Wu AD; Iacoboni M; Ye YL; Huang SL; Chiang MC
    Neuroimage; 2018 Nov; 181():1-15. PubMed ID: 29966717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging of mouse brain networks plasticity following motor learning.
    Badea A; Ng KL; Anderson RJ; Zhang J; Miller MI; O'Brien RJ
    PLoS One; 2019; 14(5):e0216596. PubMed ID: 31067263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential impact of reward and punishment on functional connectivity after skill learning.
    Steel A; Silson EH; Stagg CJ; Baker CI
    Neuroimage; 2019 Apr; 189():95-105. PubMed ID: 30630080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep-dependent motor memory plasticity in the human brain.
    Walker MP; Stickgold R; Alsop D; Gaab N; Schlaug G
    Neuroscience; 2005; 133(4):911-7. PubMed ID: 15964485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The time course of changes during motor sequence learning: a whole-brain fMRI study.
    Toni I; Krams M; Turner R; Passingham RE
    Neuroimage; 1998 Jul; 8(1):50-61. PubMed ID: 9698575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconstructing skill learning and its physiological mechanisms.
    Spampinato D; Celnik P
    Cortex; 2018 Jul; 104():90-102. PubMed ID: 29775838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study.
    Steel A; Song S; Bageac D; Knutson KM; Keisler A; Saad ZS; Gotts SJ; Wassermann EM; Wilkinson L
    Cortex; 2016 Jan; 74():134-48. PubMed ID: 26673946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of motor-related functional integration during motor sequence learning.
    Coynel D; Marrelec G; Perlbarg V; Pélégrini-Issac M; Van de Moortele PF; Ugurbil K; Doyon J; Benali H; Lehéricy S
    Neuroimage; 2010 Jan; 49(1):759-66. PubMed ID: 19716894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CASL fMRI of subcortico-cortical perfusion changes during memory-guided finger sequences.
    Garraux G; Hallett M; Talagala SL
    Neuroimage; 2005 Mar; 25(1):122-32. PubMed ID: 15734349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired sequence learning in dystonia mutation carriers: a genotypic effect.
    Carbon M; Argyelan M; Ghilardi MF; Mattis P; Dhawan V; Bressman S; Eidelberg D
    Brain; 2011 May; 134(Pt 5):1416-27. PubMed ID: 21515903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical mechanisms for acquisition and performance of bimanual motor sequences.
    De Weerd P; Reinke K; Ryan L; McIsaac T; Perschler P; Schnyer D; Trouard T; Gmitro A
    Neuroimage; 2003 Aug; 19(4):1405-16. PubMed ID: 12948698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-behavior correlates of optimizing learning through interleaved practice.
    Lin CH; Knowlton BJ; Chiang MC; Iacoboni M; Udompholkul P; Wu AD
    Neuroimage; 2011 Jun; 56(3):1758-72. PubMed ID: 21376126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.