These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20555189)

  • 1. Three-beam X-ray rocking curves calculated from computer-simulated pinhole topographs.
    Ishiwata G; Okitsu K; Ishiguro M
    Acta Crystallogr A; 2010 Jul; 66(Pt 4):484-8. PubMed ID: 20555189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-simulated X-ray three-beam pinhole topographs for spherical silicon crystals.
    Okitsu K
    Acta Crystallogr A; 2011 Nov; 67(Pt 6):559-60. PubMed ID: 22011473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimentally obtained and computer-simulated X-ray asymmetric eight-beam pinhole topographs for a silicon crystal.
    Okitsu K; Imai Y; Yoda Y; Ueji Y
    Acta Crystallogr A Found Adv; 2019 May; 75(Pt 3):474-482. PubMed ID: 31041903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-dependent six-beam X-ray pinhole topographs.
    Okitsu K; Yoda Y; Imai Y; Ueji Y; Urano Y; Zhang X
    Acta Crystallogr A; 2006 Jul; 62(Pt 4):237-47. PubMed ID: 16788264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally obtained and computer-simulated X-ray non-coplanar 18-beam pinhole topographs for a silicon crystal.
    Okitsu K; Imai Y; Yoda Y
    Acta Crystallogr A Found Adv; 2019 May; 75(Pt 3):483-488. PubMed ID: 31041904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-dependent X-ray six-beam pinhole topographs for a channel-cut silicon crystal.
    Okitsu K; Yoda Y; Imai Y; Ueji Y
    Acta Crystallogr A; 2011 Nov; 67(Pt 6):550-6. PubMed ID: 22011471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray Takagi-Taupin dynamical theory generalized to n-beam diffraction cases.
    Okitsu K
    Acta Crystallogr A; 2003 May; 59(Pt 3):235-44. PubMed ID: 12714774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of X-ray rocking curves in the Bragg-Laue case.
    Yoshizawa M; Fukamachi T; Hirano K; Oba T; Negishi R; Hirano K; Kawamura T
    Acta Crystallogr A; 2008 Sep; 64(Pt 5):515-8. PubMed ID: 18708714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray Laue diffraction by sectioned multilayers. I. Pendellösung effect and rocking curves.
    Punegov VI
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1466-1475. PubMed ID: 34475294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction in perfect t x l crystals. Rocking curves.
    Thorkildsen G; Larsen HB
    Acta Crystallogr A; 1999 Sep; 55(Pt 5):840-854. PubMed ID: 10927294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 'Six-beam X-ray section topograph' images and computer-simulated images using the new n-beam dynamical theory based on the Takagi-Taupin equations.
    Okitsu K; Imai Y; Ueji Y; Yoda Y
    Acta Crystallogr A; 2003 Jul; 59(Pt 4):311-6. PubMed ID: 12832809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray reflectivity of chemically vapor-deposited diamond single crystals in the Laue geometry.
    Stoupin S; Ruff JPC; Krawczyk T; Finkelstein KD
    Acta Crystallogr A Found Adv; 2018 Sep; 74(Pt 5):567-577. PubMed ID: 30182943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of X-ray plane-wave rocking curves on the deviation from exact Bragg orientation in and perpendicular to the diffraction plane for the asymmetrical Laue case.
    Balyan MK
    Acta Crystallogr A Found Adv; 2018 May; 74(Pt 3):204-215. PubMed ID: 29724966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical calculation for X-ray 24-beam diffraction in a two-plate crystal cavity of silicon.
    Chiu MS; Stetsko YP; Chang SL
    Acta Crystallogr A; 2008 May; 64(Pt 3):394-403. PubMed ID: 18421129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change of lattice distortion images in X-ray topography with resonant scattering in the Laue case.
    Negishi R; Yoshizawa M; Zhou S; Matsumoto I; Fukamachi T; Kawamura T
    J Synchrotron Radiat; 2004 May; 11(Pt 3):266-71. PubMed ID: 15103114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I.
    Kohn VG; Khikhlukha DR
    Acta Crystallogr A Found Adv; 2016 May; 72(Pt 3):349-56. PubMed ID: 27126111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. II.
    Kohn VG
    Acta Crystallogr A Found Adv; 2017 Jan; 73(Pt 1):30-38. PubMed ID: 28042801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the three-dimensional structure of dislocations in silicon by synchrotron white X-ray topography combined with a topo-tomographic technique.
    Kawado S; Taishi T; Iida S; Suzuki Y; Chikaura Y; Kajiwara K
    J Synchrotron Radiat; 2004 Jul; 11(Pt 4):304-8. PubMed ID: 15211035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray diffraction imaging using perfect crystals.
    Davis TJ
    J Xray Sci Technol; 1996 Jan; 6(4):317-42. PubMed ID: 21307532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of implanted semiconductors by means of white-beam and plane-wave synchrotron topography.
    Wieteska K; Wierzchowski W; Graeff W; Turos A; Grötzschel R
    J Synchrotron Radiat; 2000 Sep; 7(Pt 5):318-25. PubMed ID: 16609215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.