These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 20555627)

  • 1. Near infrared rugate filter fabrication by ion beam assisted deposition of Si((1-x))N(x) films.
    Donovan EP; Van Vechten D; Kahn AD; Carosella CA; Hubler GK
    Appl Opt; 1989 Jul; 28(14):2940-4. PubMed ID: 20555627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive ion assisted deposition of aluminum oxynitride thin films.
    Hwangbo CK; Lingg LJ; Lehan JP; Macleod HA; Suits F
    Appl Opt; 1989 Jul; 28(14):2779-84. PubMed ID: 20555598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering.
    Lambrinos MF; Valizadeh R; Colligon JS
    Appl Opt; 1996 Jul; 35(19):3620-6. PubMed ID: 21102756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared interference coating by use of Si3N4 and SiO2 films with ion-assisted deposition.
    Lee CC; Ku SL
    Appl Opt; 2010 Jan; 49(3):437-41. PubMed ID: 20090808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition.
    van Popta AC; Hawkeye MM; Sit JC; Brett MJ
    Opt Lett; 2004 Nov; 29(21):2545-7. PubMed ID: 15584289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous silicon and amorphous silicon nitride films prepared by a plasma-enhanced chemical vapor deposition process as optical coating materials.
    Tsai RY; Kuo LC; Ho FC
    Appl Opt; 1993 Oct; 32(28):5561-6. PubMed ID: 20856369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-material inhomogeneous optical filters based on microstructural gradients in plasma-deposited silicon nitride.
    Vernhes R; Zabeida O; Klemberg-Sapieha JE; Martinu L
    Appl Opt; 2004 Jan; 43(1):97-103. PubMed ID: 14714649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high-energy electron-beam irradiation on the optical properties of ion-beam-sputtered silicon oxynitride thin films.
    Karanth S; Shanbhogue GH; Nagendra CL
    Appl Opt; 2005 Oct; 44(29):6186-92. PubMed ID: 16237933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride.
    Kischkat J; Peters S; Gruska B; Semtsiv M; Chashnikova M; Klinkmüller M; Fedosenko O; Machulik S; Aleksandrova A; Monastyrskyi G; Flores Y; Masselink WT
    Appl Opt; 2012 Oct; 51(28):6789-98. PubMed ID: 23033094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of evaporated porous silicon rugate filters.
    Robbie K; Cui Y; Elliott C; Kaminska K
    Appl Opt; 2006 Nov; 45(32):8298-303. PubMed ID: 17068573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Chemical Gas Vapor Sensor Based on Photoluminescence Enhancement of Rugate Porous Silicon Filters.
    Zhou Z; Sohn H
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of multi-optical filters based on encoded rugate porous silicon.
    Kim J; Jang S; Koh Y; Park C; Woo HG; Kim S; Sohn H
    J Nanosci Nanotechnol; 2008 Oct; 8(10):4951-7. PubMed ID: 19198369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-beam evaporated silicon as a top contact for molecular electronic device fabrication.
    Kumar R; Yan H; McCreery RL; Bergren AJ
    Phys Chem Chem Phys; 2011 Aug; 13(32):14318-24. PubMed ID: 21701710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rugate filters fabricated by a radio frequency magnetron sputtering system by use of an optical in situ monitoring technique.
    Yoda H; Tanaka D; Hanaizumi O; Kogami Y; Shiraishi K
    Appl Opt; 2006 Jan; 45(1):184-90. PubMed ID: 16422337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codeposition of continuous composition rugate filters.
    Gunning WJ; Hall RL; Woodberry FJ; Southwell WH; Gluck NS
    Appl Opt; 1989 Jul; 28(14):2945-8. PubMed ID: 20555628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dichroic rugate filters based on birefringent porous silicon.
    Ishikura N; Fujii M; Nishida K; Hayashi S; Diener J
    Opt Express; 2008 Sep; 16(20):15531-9. PubMed ID: 18825191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference coatings based on synthesized silicon nitride.
    Lee CC; Chen HL; Hsu JC; Tien CL
    Appl Opt; 1999 Apr; 38(10):2078-82. PubMed ID: 18319766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rugate filter made with composite thin films by ion-beam sputtering.
    Lee CC; Tang CJ; Wu JY
    Appl Opt; 2006 Mar; 45(7):1333-7. PubMed ID: 16539230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra light-trapping filters with broadband reflection holograms.
    Zhang D; Vorndran S; Russo JM; Gordon M; Kostuk RK
    Opt Express; 2012 Jun; 20(13):14260-71. PubMed ID: 22714488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thirty-seven layer optical filter from polymerized solgel solutions.
    Partlow DP; O'Keeffe TW
    Appl Opt; 1990 Apr; 29(10):1526-9. PubMed ID: 20563036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.