BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20555646)

  • 1. Backscatter laser depolarization studies of simulated stratospheric aerosols: crystallized sulfuric acid droplets.
    Sassen K; Zhao H; Yu BK
    Appl Opt; 1989 Aug; 28(15):3024-9. PubMed ID: 20555646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber.
    Sakai T; Nagai T; Zaizen Y; Mano Y
    Appl Opt; 2010 Aug; 49(23):4441-9. PubMed ID: 20697448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated polarization diversity lidar returns from water and precipitating mixed phase clouds.
    Sassen K; Zhao H; Dodd GC
    Appl Opt; 1992 May; 31(15):2914-23. PubMed ID: 20725225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of stratospheric sulfuric Acid aerosols with polarization lidar: theory, simulations, and observations.
    Beyerle G
    Appl Opt; 2000 Sep; 39(27):4994-5000. PubMed ID: 18350097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of IR laser backscatter spectra from sulfuric acid and ammonium sulfate aerosols.
    Mudd HT; Kruger CH; Murray ER
    Appl Opt; 1982 Mar; 21(6):1146-54. PubMed ID: 20389820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volcanic Bishop's ring: evidence for a sulfuric acid tetrahydrate particle aureole.
    Sassen K; Peter T; Luo BP; Crutzen PJ
    Appl Opt; 1994 Jul; 33(21):4602-6. PubMed ID: 20935828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of growth and evaporation effects on the extinction of 1.0-microm solar radiation traversing stratospheric sulfuric acid aerosols.
    Yue GK; Deepak A
    Appl Opt; 1981 Oct; 20(20):3669-75. PubMed ID: 20372237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbiting lidar simulations. 1: Aerosol and cloud measurements by an independent-wavelength technique.
    Russell PB; Morley BM; Livingston JM; Grams GW; Patterson EM
    Appl Opt; 1982 May; 21(9):1541-53. PubMed ID: 20389895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerosol chamber study of optical constants and N2O5 uptake on supercooled H2SO4/H2O/HNO3 solution droplets at polar stratospheric cloud temperatures.
    Wagner R; Naumann KH; Mangold A; Möhler O; Saathoff H; Schurath U
    J Phys Chem A; 2005 Sep; 109(36):8140-8. PubMed ID: 16834200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative biological potency of acidic sulfate aerosols: implications for the interpretation of laboratory and field studies.
    Schlesinger RB; Chen LC
    Environ Res; 1994 Apr; 65(1):69-85. PubMed ID: 8162886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses.
    Sassen K
    Appl Opt; 1991 Aug; 30(24):3421-8. PubMed ID: 20706407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do NAD and NAT form in liquid stratospheric aerosols by pseudoheterogeneous nucleation?
    Knopf DA
    J Phys Chem A; 2006 May; 110(17):5745-50. PubMed ID: 16640368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared extinction spectra of some common liquid aerosols.
    Carlon HR; Anderson DH; Milham ME; Tarnove TL; Frickel RH; Sindoni I
    Appl Opt; 1977 Jun; 16(6):1598-605. PubMed ID: 20168760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements.
    Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J
    Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared optical constants of highly diluted sulfuric acid solution droplets at cirrus temperatures.
    Wagner R; Benz S; Bunz H; Möhler O; Saathoff H; Schnaiter M; Leisner T; Ebert V
    J Phys Chem A; 2008 Nov; 112(46):11661-76. PubMed ID: 18942812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles.
    Adachi H; Shibata T; Iwasaka Y; Fujiwara M
    Appl Opt; 2001 Dec; 40(36):6587-95. PubMed ID: 18364966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cirrus cloud transmittance and backscatter in the infrared measured with a CO(2) lidar.
    Hall FF; Cupp RE; Troxel SW
    Appl Opt; 1988 Jun; 27(12):2510-6. PubMed ID: 20531784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lagrangian simulation of ice particles and resulting dehydration in the polar winter stratosphere.
    Tritscher I; Grooß JU; Spang R; Pitts MC; Poole LR; Müller R; Riese M
    Atmos Chem Phys; 2019 Jan; 19(1):543-563. PubMed ID: 33414817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared lidar observations of stratospheric aerosols.
    Forrister HN; Roberts DW; Mercer AJ; Gimmestad GG
    Appl Opt; 2014 Jun; 53(16):D40-8. PubMed ID: 24922442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.