These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 20555672)

  • 1. Gasdynamic focusing in an underexpanded jet.
    Muenchausen RE; Garcia AR; Keller RA; Nogar NS
    Appl Opt; 1989 Aug; 28(15):3220-5. PubMed ID: 20555672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous planar measurements of velocity and pressure fields in gas flows using laser-induced fluorescence.
    Hiller B; Hanson RK
    Appl Opt; 1988 Jan; 27(1):33-48. PubMed ID: 20523544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO.
    Lee MP; McMillin BK; Hanson RK
    Appl Opt; 1993 Sep; 32(27):5379-96. PubMed ID: 20856348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO.
    Paul PH; Lee MP; Hanson RK
    Opt Lett; 1989 May; 14(9):417-9. PubMed ID: 19749938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and pressure imaging using infrared planar laser-induced fluorescence.
    Rothamer DA; Hanson RK
    Appl Opt; 2010 Nov; 49(33):6436-47. PubMed ID: 21102669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of diffusion on impedance measurements in a hydrodynamic flow focusing sensor.
    Nasir M; Price DT; Shriver-Lake LC; Ligler F
    Lab Chip; 2010 Oct; 10(20):2787-95. PubMed ID: 20725680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous wave dye-laser technique for simultaneous, spatially resolved measurements of temperature, pressure, and velocity of NO in an underexpanded free jet.
    Rosa MD; Chang AY; Hanson RK
    Appl Opt; 1993 Jul; 32(21):4074-87. PubMed ID: 20830049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared absorption imaging of 2D supersonic jet expansions: Free expansion, cluster formation, and shock wave patterns.
    Zischang J; Suhm MA
    J Chem Phys; 2013 Jul; 139(2):024201. PubMed ID: 23862934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kr-PLIF for scalar imaging in supersonic flows.
    Narayanaswamy V; Burns R; Clemens NT
    Opt Lett; 2011 Nov; 36(21):4185-7. PubMed ID: 22048359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow.
    McMillin BK; Palmer JL; Hanson RK
    Appl Opt; 1993 Dec; 32(36):7532-45. PubMed ID: 20861973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-component molecular tagging velocimetry utilizing NO fluorescence lifetime and NO2 photodissociation techniques in an underexpanded jet flowfield.
    Hsu AG; Srinivasan R; Bowersox RD; North SW
    Appl Opt; 2009 Aug; 48(22):4414-23. PubMed ID: 19649046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous atomic hydrogen shock pattern in a supersonic plasma Jet.
    Mazouffre S; Boogaarts MG; van Der Mullen JA ; Schram DC
    Phys Rev Lett; 2000 Mar; 84(12):2622-5. PubMed ID: 11017284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of supersonic jet screech with focused laser differential interferometry.
    Price TJ; Gragston M; Schmisseur JD; Kreth PA
    Appl Opt; 2020 Oct; 59(28):8902-8908. PubMed ID: 33104576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow Characterization of a Diamond-Depositing DC Arcjet by Laser-Induced Fluorescence.
    Juchmann W; Luque J; Jeffries JB
    Appl Opt; 2000 Jul; 39(21):3704-11. PubMed ID: 18349945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic focusing investigation in a micro-flow cytometer.
    Yang AS; Hsieh WH
    Biomed Microdevices; 2007 Apr; 9(2):113-22. PubMed ID: 17151936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer.
    Goddard G; Martin JC; Graves SW; Kaduchak G
    Cytometry A; 2006 Feb; 69(2):66-74. PubMed ID: 16419065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution continuous-wave coherent anti-Stokes Raman spectroscopy in a supersonic jet.
    Gustafson EK; McDaniel JC; Byer RL
    Opt Lett; 1982 Sep; 7(9):434-8. PubMed ID: 19714047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Pitot Tube on Measurements in Supersonic Axisymmetric Underexpanded Microjets.
    Mironov SG; Aniskin VM; Korotaeva TA; Tsyryulnikov IS
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30959859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-enhanced mixing and flameholding in supersonic flow.
    Firsov A; Savelkin KV; Yarantsev DA; Leonov SB
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.