These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 20555984)

  • 1. Initial measurements using a 1.54-microm eyesafe Raman shifted lidar.
    Patterson EM; Roberts DW; Gimmestad GG
    Appl Opt; 1989 Dec; 28(23):4978-81. PubMed ID: 20555984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrapulse temporal and wavelength shifts of a high-power 2.1-µm Ho:YAG laser and their potential influence on atmospheric lidar measurements.
    Vaidyanathan M; Killinger DK
    Appl Opt; 1994 Nov; 33(33):7747-53. PubMed ID: 20962985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diode-pumped Q-switched Nd:YAG-KGW Raman laser operating in two-color modulation.
    Wang W; Gong M; Zhao Q; Hu Z; Fu C
    Opt Express; 2010 Feb; 18(3):2655-61. PubMed ID: 20174095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mum by airborne hard-target-calibrated Nd:YAG /methane Raman lidar.
    Spinhirne JD; Chudamani S; Cavanaugh JF; Bufton JL
    Appl Opt; 1997 May; 36(15):3475-90. PubMed ID: 18253366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman shifting of Nd:YAG laser radiation in methane:an efficient method to generate 3-microm radiation for medical uses.
    Guntermann C; Gathen VS; Döbele HF
    Appl Opt; 1989 Jan; 28(1):135-8. PubMed ID: 20548439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Stokes wavelength generation in H(2), D(2), and CH(4) for lidar aerosol measurements.
    Chu Z; Singh UN; Wilkerson TD
    Appl Opt; 1991 Oct; 30(30):4350-7. PubMed ID: 20717207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman-shifted eye-safe aerosol lidar.
    Mayor SD; Spuler SM
    Appl Opt; 2004 Jul; 43(19):3915-24. PubMed ID: 15250558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing.
    Lancaster DG; Dawes JM
    Appl Opt; 1996 Jul; 35(21):4041-5. PubMed ID: 21102808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere.
    Liu F; Yi F
    Appl Opt; 2013 Oct; 52(28):6884-95. PubMed ID: 24085202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopic investigation of solid samples using a low-repetition-rate pulsed Nd:YAG laser as the excitation source.
    Zhang J; Feng Z; Li M; Chen J; Xu Q; Lian Y; Li C
    Appl Spectrosc; 2007 Jan; 61(1):38-47. PubMed ID: 17311715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the 2.8 microm emission doubly shifted Raman laser using stimulated Brillouin scattering in a cascaded cavity.
    Park YH; Lee DW; Kong HJ; Kim YS
    Appl Opt; 2008 Jul; 47(20):3646-50. PubMed ID: 18617981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Er:YAG and alexandrite laser radiation propagation in root canal and its effect on bacteria.
    Jelínková H; Dostálová T; Dusková J; Krátký M; Miyagi M; Shoji S; Sulc J; Nemec M
    J Clin Laser Med Surg; 1999 Dec; 17(6):267-72. PubMed ID: 11800099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an eye-safe solid-state tunable laser transmitter in the 1.4-1.5 microm wavelength region based on Cr4+:YAG crystal for lidar applications.
    Petrova-Mayor A; Wulfmeyer V; Weibring P
    Appl Opt; 2008 Apr; 47(10):1522-34. PubMed ID: 18382581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passively Q-switched Nd:Sc0.2Y0.8SiO5 dual-wavelength laser with the orthogonally polarized output.
    Liu SD; Zheng LH; He JL; Xu J; Xu XD; Su LB; Yang KJ; Zhang BT; Wang RH; Liu XM
    Opt Express; 2012 Sep; 20(20):22448-53. PubMed ID: 23037393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upgraded 1.56 microm lidar at IMK-IFU with 0.28 J/pulse.
    Trickl T
    Appl Opt; 2010 Jul; 49(19):3732-40. PubMed ID: 20648139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the nonlinear Raman lidar monitoring the CO2 gas].
    Zhao YF; Zhang YC; Hong GL; Liu XQ; Cao KF; Fang X; Tao ZM; Yu SH; Qu KF; Shao SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):794-7. PubMed ID: 16883838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sum frequency generation of sodium resonance radiation.
    Jeys TH; Brailove AA; Mooradian A
    Appl Opt; 1989 Jul; 28(13):2588-91. PubMed ID: 20555564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system.
    Farley RW; Dao PD
    Appl Opt; 1995 Jul; 34(21):4269-73. PubMed ID: 21052256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial effects of pulsed Nd:YAG laser radiation at different energy settings in root canals.
    Folwaczny M; Mehl A; Jordan C; Hickel R
    J Endod; 2002 Jan; 28(1):24-9. PubMed ID: 11806644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient 1.8 μm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser.
    Bai F; Wang Q; Liu Z; Zhang X; Sun W; Wan X; Li P; Jin G; Zhang H
    Opt Lett; 2011 Mar; 36(6):813-5. PubMed ID: 21403693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.