These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 20556068)

  • 21. Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials.
    Astrath NG; Astrath FB; Shen J; Zhou J; Pedreira PR; Malacarne LC; Bento AC; Baesso ML
    Opt Lett; 2008 Jul; 33(13):1464-6. PubMed ID: 18594666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New thermooptical measurement method and a comparison with other methods.
    Hu C; Whinnery JR
    Appl Opt; 1973 Jan; 12(1):72-9. PubMed ID: 20125231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arbitrary accelerating micron-scale caustic beams in two and three dimensions.
    Froehly L; Courvoisier F; Mathis A; Jacquot M; Furfaro L; Giust R; Lacourt PA; Dudley JM
    Opt Express; 2011 Aug; 19(17):16455-65. PubMed ID: 21935010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mode-mismatched confocal thermal-lens microscope with collimated probe beam.
    Cabrera H; Korte D; Franko M
    Rev Sci Instrum; 2015 May; 86(5):053701. PubMed ID: 26026526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector.
    Pal SB; Haldar A; Roy B; Banerjee A
    Rev Sci Instrum; 2012 Feb; 83(2):023108. PubMed ID: 22380080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous laser-induced fluorescence, coaxial thermal lens spectroscopy and retro-reflected beam interference detection for capillary electrophoresis.
    Xiong B; Wang W; Miao X; Liu L; Wang L; Zhou X; Hu J
    Talanta; 2012 Jan; 88():168-74. PubMed ID: 22265483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual detection of single-nanometer-sized particles in liquid by photothermal microscope.
    Mawatari K; Kitamori T; Sawada T
    Anal Chem; 1998 Dec; 70(23):5037-41. PubMed ID: 21644684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency modulation time delay thermal lens effect spectrometry: a new technique of transient photothermal calorimetry.
    Power JF
    Appl Opt; 1990 Feb; 29(6):841-54. PubMed ID: 20556193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pulsed-laser crossed-beam thermal lens spectrometry for detection in a microchannel: influence of the size of the excitation beam waist.
    Ghaleb KA; Georges J
    Appl Spectrosc; 2004 Sep; 58(9):1116-21. PubMed ID: 15479529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equivalent thin lens model for thermal blooming compensation.
    Fleck JA; Morris JR
    Appl Opt; 1978 Aug; 17(16):2575-9. PubMed ID: 20203824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid crystal adaptive lens: beam translation and field meshing.
    Brinkley PF; Kowel ST; Chu C
    Appl Opt; 1988 Nov; 27(21):4578-86. PubMed ID: 20539611
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous coaxial thermal lens spectroscopy and retro-reflected beam interference detection for capillary electrophoresis.
    Xiong B; Miao X; Zhou X; Deng Y; Zhou P; Hu J
    J Chromatogr A; 2008 Oct; 1209(1-2):260-6. PubMed ID: 18829035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser-based refractive-index detection for capillary electrophoresis: ray-tracing interference theory.
    Krattiger B; Bruno AE; Widmer HM; Geiser M; Dändliker R
    Appl Opt; 1993 Feb; 32(6):956-65. PubMed ID: 20802773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-field unsymmetrical beam shaping for decreasing and homogenizing the thermal deformation of optical element in a beam control system.
    Ma H; Zhou Q; Xu X; Du S; Liu Z
    Opt Express; 2011 Sep; 19 Suppl 5():A1037-50. PubMed ID: 21935246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial evolution of laser beam profiles in an SBS amplifier.
    Miller EJ; Skeldon MD; Boyd RW
    Appl Opt; 1989 Jan; 28(1):92-6. PubMed ID: 20548432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of the thermal lens signal induced by sample matrix absorption of the probe laser beam.
    Grishko VI; Tran CD; Duley WW
    Appl Opt; 2002 Sep; 41(27):5814-22. PubMed ID: 12269581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Approximate analyses of the refractive attenuation of laser beam intensities by turbulent absorbing media.
    Wohlers MR
    Appl Opt; 1972 Jun; 11(6):1389-98. PubMed ID: 20119151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electric-field induced harmonic generation as a probe of the focal region of a laser beam.
    Bigio IJ; Finn RS; Ward JF
    Appl Opt; 1975 Feb; 14(2):336-42. PubMed ID: 20134889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.