These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 20556132)

  • 21. Ground-based laser DIAL system for long-term measurements of stratospheric ozone.
    McDermid IS; Godin SM; Lindqvist LO
    Appl Opt; 1990 Sep; 29(25):3603-12. PubMed ID: 20567460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman shifting of KrF laser radiation for tropospheric ozone measurements.
    Grant WB; Browell EV; Higdon NS; Ismail S
    Appl Opt; 1991 Jun; 30(18):2628-33. PubMed ID: 20700252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear-approximation technique for determining vertical ozone-concentration profiles with a differential-absorption lidar.
    Kovalev VA; Bristow MP; McElroy JL
    Appl Opt; 1996 Aug; 35(24):4803-11. PubMed ID: 21102905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere.
    Ansmann A; Bosenberg J
    Appl Opt; 1987 Aug; 26(15):3026-32. PubMed ID: 20490005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Airborne and ground based lidar measurements of the atmospheric pressure profile.
    Korb CL; Schwemmer GK; Dombrowski M; Weng CY
    Appl Opt; 1989 Aug; 28(15):3015-20. PubMed ID: 20555644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility.
    McDermid S; Beyerle G; Haner DA; Leblanc T
    Appl Opt; 2002 Dec; 41(36):7550-5. PubMed ID: 12510918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lidar setup for daytime and nighttime probing of stratospheric ozone and measurements in polar and equatorial regions.
    Steinbrecht W; Rothe KW; Walther H
    Appl Opt; 1989 Sep; 28(17):3616-24. PubMed ID: 20555745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ozone and water-vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements.
    Lazzarotto B; Frioud M; Larchevêque G; Mitev V; Quaglia P; Simeonov V; Thompson A; van den Bergh H; Calpini B
    Appl Opt; 2001 Jun; 40(18):2985-97. PubMed ID: 18357316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infrared lidar overlap function: an experimental determination.
    Guerrero-Rascado JL; Costa MJ; Bortoli D; Silva AM; Lyamani H; Alados-Arboledas L
    Opt Express; 2010 Sep; 18(19):20350-9. PubMed ID: 20940927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Opt Lett; 2004 May; 29(10):1063-5. PubMed ID: 15181986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of anisotropic multiple scattering on solar radiation in the troposphere and stratosphere.
    Anderson DE; Meier RR
    Appl Opt; 1979 Jun; 18(12):1955-60. PubMed ID: 20212585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of hydroxyl radical in the upper atmosphere using lidar from the space shuttle.
    Heaps WS
    Appl Opt; 1980 Jan; 19(2):243-9. PubMed ID: 20216836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observations of winds with an incoherent lidar detector.
    Abreu VJ; Barnes JE; Hays PB
    Appl Opt; 1992 Aug; 31(22):4509-14. PubMed ID: 20725450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ground-based lidar for atmospheric boundary layer ozone measurements.
    Kuang S; Newchurch MJ; Burris J; Liu X
    Appl Opt; 2013 May; 52(15):3557-66. PubMed ID: 23736241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lidar measurements of stratospheric ozone and intercomparisons and validation.
    McDermid IS; Godin SM; Walsh TD
    Appl Opt; 1990 Nov; 29(33):4914-23. PubMed ID: 20577486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Description and evaluation of a tropospheric ozone lidar implemented on an existing lidar in the southern subtropics.
    Baray JL; Leveau J; Porteneuve J; Ancellet G; Keckhut P; Posny F; Baldy S
    Appl Opt; 1999 Nov; 38(33):6808-17. PubMed ID: 18324220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mie lidar observations of lower tropospheric aerosols and clouds.
    Veerabuthiran S; Razdan AK; Jindal MK; Dubey DK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):32-6. PubMed ID: 21975046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system.
    Ehret G; Kiemle C; Renger W; Simmet G
    Appl Opt; 1993 Aug; 32(24):4534-51. PubMed ID: 20830116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance modeling of an airborne Raman water-vapor lidar.
    Whiteman DN; Schwemmer G; Berkoff T; Plotkin H; Ramos-Izquierdo L; Pappalardo G
    Appl Opt; 2001 Jan; 40(3):375-90. PubMed ID: 18357011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.