These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20556271)

  • 1. Synthesis and biological evaluation of amphotericin B derivatives.
    Volmer AA; Szpilman AM; Carreira EM
    Nat Prod Rep; 2010 Sep; 27(9):1329-49. PubMed ID: 20556271
    [No Abstract]   [Full Text] [Related]  

  • 2. Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B.
    Paquet V; Volmer AA; Carreira EM
    Chemistry; 2008; 14(8):2465-81. PubMed ID: 18196508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the role of the mycosamine C2'-OH on the activity of amphotericin B.
    Croatt MP; Carreira EM
    Org Lett; 2011 Mar; 13(6):1390-3. PubMed ID: 21322610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biologically active amphotericin B-calix[4]arene conjugates.
    Paquet V; Zumbuehl A; Carreira EM
    Bioconjug Chem; 2006; 17(6):1460-3. PubMed ID: 17105224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel strategy for bioconjugation: synthesis and preliminary evaluation with amphotericin B.
    Zumbuehl A; Stano P; Sohrmann M; Peter M; Walde P; Carreira EM
    Org Biomol Chem; 2007 May; 5(9):1339-42. PubMed ID: 17464400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Synthesis and biological activity of hydrophosphoryl derivatives of amphotericin B].
    Belakhov VV; Shenin IuD; Arabiĭskiĭ RA; Shtil'bans EB
    Antibiot Khimioter; 1996; 41(7-8):4-8. PubMed ID: 8999761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine.
    Paquet V; Carreira EM
    Org Lett; 2006 Apr; 8(9):1807-9. PubMed ID: 16623556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Amphotericin B: properties, chemical structure, screening of derivatives].
    Shenin IuD; Belakhov VV
    Antibiot Khimioter; 1997; 42(4):34-46. PubMed ID: 9182506
    [No Abstract]   [Full Text] [Related]  

  • 9. An enantioselective synthesis of the C(33)-C(37) fragment of Amphotericin B.
    Karisalmi K; Rissanen K; Koskinen AM
    Org Biomol Chem; 2003 Sep; 1(18):3193-6. PubMed ID: 14527151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and investigation of tryptophan-amphotericin B conjugates.
    Zumbuehl A; Stano P; Sohrmann M; Dietiker R; Peter M; Carreira EM
    Chembiochem; 2009 Jul; 10(10):1617-20. PubMed ID: 19533712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and structure-activity relationships of amides of amphotericin B.
    Jarzebski A; Falkowski L; Borowski E
    J Antibiot (Tokyo); 1982 Feb; 35(2):220-9. PubMed ID: 7076567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterisation of a new amphotericin B-methoxypoly(ethylene glycol) conjugate.
    Sedlák M; Buchta V; Kubicová L; Simůnek P; Holcapek M; Kasparová P
    Bioorg Med Chem Lett; 2001 Nov; 11(21):2833-5. PubMed ID: 11597410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic.
    Baginski M; Sternal K; Czub J; Borowski E
    Acta Biochim Pol; 2005; 52(3):655-8. PubMed ID: 16086075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A post-PKS oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity.
    Palacios DS; Anderson TM; Burke MD
    J Am Chem Soc; 2007 Nov; 129(45):13804-5. PubMed ID: 17956100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous determination of purity and potency of amphotericin B by HPLC.
    Chang Y; Wang YH; Hu CQ
    J Antibiot (Tokyo); 2011 Nov; 64(11):735-9. PubMed ID: 21971300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-methyl-N-D-fructopyranosylamphotericin B methyl ester, new amphotericin B derivative of low toxicity.
    Grzybowska J; Sowiński P; Gumieniak J; Zieniawa T; Borowski E
    J Antibiot (Tokyo); 1997 Aug; 50(8):709-11. PubMed ID: 9315089
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis and biophysical studies on 35-deoxy amphotericin B methyl ester.
    Szpilman AM; Cereghetti DM; Manthorpe JM; Wurtz NR; Carreira EM
    Chemistry; 2009 Jul; 15(29):7117-28. PubMed ID: 19544513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New targeting system for antimycotic drugs: beta-glucosidase sensitive amphotericin B-star poly(ethylene glycol) conjugate.
    Sedlák M; Drabina P; Bílková E; Simůnek P; Buchta V
    Bioorg Med Chem Lett; 2008 May; 18(9):2952-6. PubMed ID: 18396401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterisation of amphotericin B analogues and truncated polyketide intermediates produced by genetic engineering of Streptomyces nodosus.
    Murphy B; Anderson K; Borissow C; Caffrey P; Griffith G; Hearn J; Ibrahim O; Khan N; Lamburn N; Lee M; Pugh K; Rawlings B
    Org Biomol Chem; 2010 Aug; 8(16):3758-70. PubMed ID: 20571619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes.
    Wu W; Wieckowski S; Pastorin G; Benincasa M; Klumpp C; Briand JP; Gennaro R; Prato M; Bianco A
    Angew Chem Int Ed Engl; 2005 Oct; 44(39):6358-62. PubMed ID: 16138384
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.