These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20556295)

  • 1. The synchronization of superparamagnetic beads driven by a micro-magnetic ratchet.
    Gao L; Gottron NJ; Virgin LN; Yellen BB
    Lab Chip; 2010 Aug; 10(16):2108-14. PubMed ID: 20556295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexing superparamagnetic beads driven by multi-frequency ratchets.
    Gao L; Tahir MA; Virgin LN; Yellen BB
    Lab Chip; 2011 Dec; 11(24):4214-20. PubMed ID: 22038314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traveling wave magnetophoresis for high resolution chip based separations.
    Yellen BB; Erb RM; Son HS; Hewlin R; Shang H; Lee GU
    Lab Chip; 2007 Dec; 7(12):1681-8. PubMed ID: 18030387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear dynamics of superparamagnetic beads in a traveling magnetic-field wave.
    Yellen BB; Virgin LN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011402. PubMed ID: 19658704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of superparamagnetic beads through a two-dimensional potential energy landscape.
    Tahir MA; Gao L; Virgin LN; Yellen BB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011403. PubMed ID: 21867167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-enhanced nonlinear magnetophoresis for high-resolution bioseparation.
    Li P; Mahmood A; Lee GU
    Langmuir; 2011 May; 27(10):6496-503. PubMed ID: 21506584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets.
    Hu X; Abedini-Nassab R; Lim B; Yang Y; Howdyshell M; Sooryakumar R; Yellen BB; Kim C
    J Appl Phys; 2015 Nov; 118(20):203904. PubMed ID: 26648596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic silica-coated sub-microspheres with immobilized metal ions for the selective removal of bovine hemoglobin from bovine blood.
    Zhang M; Cheng D; He X; Chen L; Zhang Y
    Chem Asian J; 2010 Jun; 5(6):1332-40. PubMed ID: 20397183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic force microscopy of superparamagnetic nanoparticles.
    Schreiber S; Savla M; Pelekhov DV; Iscru DF; Selcu C; Hammel PC; Agarwal G
    Small; 2008 Feb; 4(2):270-8. PubMed ID: 18247385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient mixing of microliter droplets as micro-bioreactors using paramagnetic microparticles manipulated by external magnetic field.
    Takei T; Sakoguchi S; Yoshida M
    J Biosci Bioeng; 2018 Nov; 126(5):649-652. PubMed ID: 29914802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions.
    Tai Y; Wang L; Gao J; Amer WA; Ding W; Yu H
    J Colloid Interface Sci; 2011 Aug; 360(2):731-8. PubMed ID: 21601864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure.
    Yang S; Liu H; Huang H; Zhang Z
    J Colloid Interface Sci; 2009 Oct; 338(2):584-90. PubMed ID: 19640548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Encapsulation of superparamagnetic iron oxide nanoparticles in poly-(lactide-co-glycolic acid) microspheres for biomedical applications.
    Gun S; Edirisinghe M; Stride E
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3129-37. PubMed ID: 23706192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The force acting on a superparamagnetic bead due to an applied magnetic field.
    Shevkoplyas SS; Siegel AC; Westervelt RM; Prentiss MG; Whitesides GM
    Lab Chip; 2007 Oct; 7(10):1294-302. PubMed ID: 17896013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
    Zhang K; Liang Q; Ma S; Mu X; Hu P; Wang Y; Luo G
    Lab Chip; 2009 Oct; 9(20):2992-9. PubMed ID: 19789755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of superparamagnetic Fe3O4/PMMA/SiO2 nanorattles with periodic mesoporous shell for lysozyme adsorption.
    Lan F; Hu H; Jiang W; Liu K; Zeng X; Wu Y; Gu Z
    Nanoscale; 2012 Apr; 4(7):2264-7. PubMed ID: 22388461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart hollow microspheres of chondroitin sulfate conjugates and magnetite nanoparticles for magnetic vector.
    Guilherme MR; Reis AV; Alves BR; Kunita MH; Rubira AF; Tambourgi EB
    J Colloid Interface Sci; 2010 Dec; 352(1):107-13. PubMed ID: 20832809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications.
    Amstad E; Textor M; Reimhult E
    Nanoscale; 2011 Jul; 3(7):2819-43. PubMed ID: 21629911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and application of hollow magnetic graphitic carbon microspheres with/without TiO2 nanoparticle layer on the surface.
    Feng S; Ren Z; Wei Y; Jiang B; Liu Y; Zhang L; Zhang W; Fu H
    Chem Commun (Camb); 2010 Sep; 46(34):6276-8. PubMed ID: 20664877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.