BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20556475)

  • 1. Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18.
    Guo Y; Yan Q; Jiang Z; Teng C; Wang X
    J Ind Microbiol Biotechnol; 2010 Nov; 37(11):1137-43. PubMed ID: 20556475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate.
    Bai DM; Li SZ; Liu ZL; Cui ZF
    Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae.
    Saito K; Hasa Y; Abe H
    J Biosci Bioeng; 2012 Aug; 114(2):166-9. PubMed ID: 22578599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae.
    Park EY; Anh PN; Okuda N
    Bioresour Technol; 2004 May; 93(1):77-83. PubMed ID: 14987724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L(+)-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation.
    Wang P; Li J; Wang L; Tang ML; Yu ZL; Zheng ZM
    J Ind Microbiol Biotechnol; 2009 Nov; 36(11):1363-8. PubMed ID: 19653020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.
    Zhang L; Li X; Yong Q; Yang ST; Ouyang J; Yu S
    Bioresour Technol; 2016 Mar; 203():173-80. PubMed ID: 26724548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate.
    Xie L; Zhao J; Wu J; Gao M; Zhao Z; Lei X; Zhao Y; Yang W; Gao X; Ma C; Liu H; Wu F; Wang X; Zhang F; Guo P; Dai G
    Bioresour Technol; 2015 Oct; 193():331-6. PubMed ID: 26143000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylose metabolism in the fungus Rhizopus oryzae: effect of growth and respiration on L+-lactic acid production.
    Maas RH; Springer J; Eggink G; Weusthuis RA
    J Ind Microbiol Biotechnol; 2008 Jun; 35(6):569-78. PubMed ID: 18247072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using tobacco waste extract in pre-culture medium to improve xylose utilization for l-lactic acid production from cellulosic waste by Rhizopus oryzae.
    Zheng Y; Wang Y; Zhang J; Pan J
    Bioresour Technol; 2016 Oct; 218():344-50. PubMed ID: 27376833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain.
    Wang L; Zhao B; Liu B; Yu B; Ma C; Su F; Hua D; Li Q; Ma Y; Xu P
    Bioresour Technol; 2010 Oct; 101(20):7908-15. PubMed ID: 20627714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue.
    Bai Z; Gao Z; Sun J; Wu B; He B
    Bioresour Technol; 2016 May; 207():346-52. PubMed ID: 26897413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [L-lactic acid fermentation by immobilized Rhizopus oryzae in a three-phase fluidized-bed].
    Chen Y; Xia L; Cen P
    Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):415-9. PubMed ID: 12548964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics.
    Guo W; Jia W; Li Y; Chen S
    Appl Biochem Biotechnol; 2010 May; 161(1-8):124-36. PubMed ID: 19937398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Primary Metabolites by
    Zaveri A; Edwards J; Rochfort S
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.
    Wang J; Wang Q; Xu Z; Zhang W; Xiang J
    J Microbiol Biotechnol; 2015 Jan; 25(1):26-32. PubMed ID: 25152056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.
    Jin B; Yin P; Ma Y; Zhao L
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):678-86. PubMed ID: 16208461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose.
    Liu Y; Liao W; Chen S
    J Appl Microbiol; 2008 Nov; 105(5):1521-8. PubMed ID: 19146489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis.
    Thongchul N; Navankasattusas S; Yang ST
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):407-16. PubMed ID: 19533174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.