These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20556662)

  • 21. Vocal fold bulging effects on phonation using a biophysical computer model.
    Alipour F; Scherer RC
    J Voice; 2000 Dec; 14(4):470-83. PubMed ID: 11130105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of supraglottal structures on the glottal jet exiting a two-layer synthetic, self-oscillating vocal fold model.
    Drechsel JS; Thomson SL
    J Acoust Soc Am; 2008 Jun; 123(6):4434-45. PubMed ID: 18537394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the difference between negative damping and eigenmode synchronization as two phonation onset mechanisms.
    Zhang Z
    J Acoust Soc Am; 2011 Apr; 129(4):2163-7. PubMed ID: 21476671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unsteady behavior of flow in a scaled-up vocal folds model.
    Krane M; Barry M; Wei T
    J Acoust Soc Am; 2007 Dec; 122(6):3659-70. PubMed ID: 18247773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A flow waveform-matched low-dimensional glottal model based on physical knowledge.
    Drioli C
    J Acoust Soc Am; 2005 May; 117(5):3184-95. PubMed ID: 15957786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical mechanisms of phonation onset: a linear stability analysis of an aeroelastic continuum model of phonation.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2007 Oct; 122(4):2279-95. PubMed ID: 17902864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
    Duncan C; Zhai G; Scherer R
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2859-71. PubMed ID: 17139744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional nature of the glottal jet.
    Triep M; Brücker C
    J Acoust Soc Am; 2010 Mar; 127(3):1537-47. PubMed ID: 20329854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of geometric parameters influencing the flow-induced vibration of a two-layer self-oscillating computational vocal fold model.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2011 Apr; 129(4):2121-32. PubMed ID: 21476668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of entrance radii on intraglottal pressure distributions in the divergent glottis.
    Li S; Scherer RC; Wan M; Wang S
    J Acoust Soc Am; 2012 Feb; 131(2):1371-7. PubMed ID: 22352510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional posture changes of the vocal fold from paired intrinsic laryngeal muscles.
    Vahabzadeh-Hagh AM; Zhang Z; Chhetri DK
    Laryngoscope; 2017 Mar; 127(3):656-664. PubMed ID: 27377032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.