BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 20556669)

  • 21. GABAergic cortical network physiology in frontotemporal lobar degeneration.
    Adams NE; Hughes LE; Rouse MA; Phillips HN; Shaw AD; Murley AG; Cope TE; Bevan-Jones WR; Passamonti L; Street D; Holland N; Nesbitt D; Friston K; Rowe JB
    Brain; 2021 Aug; 144(7):2135-2145. PubMed ID: 33710299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional dysregulation of γ-aminobutyric acid transporter in parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia.
    Bitanihirwe BK; Woo TU
    Psychiatry Res; 2014 Dec; 220(3):1155-9. PubMed ID: 25312391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment.
    Brown JT; Davies CH; Randall AD
    Eur J Neurosci; 2007 May; 25(10):2982-90. PubMed ID: 17561812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
    Hashimoto T; Volk DW; Eggan SM; Mirnics K; Pierri JN; Sun Z; Sampson AR; Lewis DA
    J Neurosci; 2003 Jul; 23(15):6315-26. PubMed ID: 12867516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.
    Georgiev D; Yoshihara T; Kawabata R; Matsubara T; Tsubomoto M; Minabe Y; Lewis DA; Hashimoto T
    Schizophr Bull; 2016 Jul; 42(4):992-1002. PubMed ID: 26980143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Perisomatic inhibition and cortical circuit dysfunction in schizophrenia.
    Lewis DA; Fish KN; Arion D; Gonzalez-Burgos G
    Curr Opin Neurobiol; 2011 Dec; 21(6):866-72. PubMed ID: 21680173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction.
    Volk DW; Lewis DA
    Physiol Behav; 2002 Dec; 77(4-5):501-5. PubMed ID: 12526990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia.
    Lewis DA
    Dialogues Clin Neurosci; 2009; 11(3):269-80. PubMed ID: 19877495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene.
    Kimoto S; Zaki MM; Bazmi HH; Lewis DA
    JAMA Psychiatry; 2015 Aug; 72(8):747-56. PubMed ID: 26038830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives.
    Fee C; Banasr M; Sibille E
    Biol Psychiatry; 2017 Oct; 82(8):549-559. PubMed ID: 28697889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional and anatomical aspects of prefrontal pathology in schizophrenia.
    Goldman-Rakic PS; Selemon LD
    Schizophr Bull; 1997; 23(3):437-58. PubMed ID: 9327508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synapse-specific contributions in the cortical pathology of schizophrenia.
    Seshadri S; Zeledon M; Sawa A
    Neurobiol Dis; 2013 May; 53():26-35. PubMed ID: 23336981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Neuronal distribution in the cerebral cortex and its significance in schizophrenia].
    Kubo K; Nakajima K
    Brain Nerve; 2013 Oct; 65(10):1133-45. PubMed ID: 24101425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal neural oscillations and synchrony in schizophrenia.
    Uhlhaas PJ; Singer W
    Nat Rev Neurosci; 2010 Feb; 11(2):100-13. PubMed ID: 20087360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A GABAergic cortical deficit dominates schizophrenia pathophysiology.
    Costa E; Davis JM; Dong E; Grayson DR; Guidotti A; Tremolizzo L; Veldic M
    Crit Rev Neurobiol; 2004; 16(1-2):1-23. PubMed ID: 15581395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia.
    Lee KH; Williams LM; Breakspear M; Gordon E
    Brain Res Brain Res Rev; 2003 Jan; 41(1):57-78. PubMed ID: 12505648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons.
    Reynolds GP; Beasley CL; Zhang ZJ
    J Neural Transm (Vienna); 2002 May; 109(5-6):881-9. PubMed ID: 12111475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High vs low frequency neural oscillations in schizophrenia.
    Moran LV; Hong LE
    Schizophr Bull; 2011 Jul; 37(4):659-63. PubMed ID: 21653278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemokine receptors and cortical interneuron dysfunction in schizophrenia.
    Volk DW; Chitrapu A; Edelson JR; Lewis DA
    Schizophr Res; 2015 Sep; 167(1-3):12-7. PubMed ID: 25464914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia.
    Lewis DA
    Brain Res Brain Res Rev; 2000 Mar; 31(2-3):270-6. PubMed ID: 10719153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.