These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 20556953)
1. [Application of aspartic acid as a non-specific binding inhibitor in the enrichment of phosphopeptides with titanium dioxide]. Chi M; Bi W; Lu Z; Song L; Jia W; Zhang Y; Qian X; Cai Y Se Pu; 2010 Feb; 28(2):152-7. PubMed ID: 20556953 [TBL] [Abstract][Full Text] [Related]
2. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides. Thingholm TE; Larsen MR Methods Mol Biol; 2016; 1355():135-46. PubMed ID: 26584923 [TBL] [Abstract][Full Text] [Related]
3. Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra. Yu LR; Zhu Z; Chan KC; Issaq HJ; Dimitrov DS; Veenstra TD J Proteome Res; 2007 Nov; 6(11):4150-62. PubMed ID: 17924679 [TBL] [Abstract][Full Text] [Related]
4. [Optimization of titanium dioxide enrichment of phosphopeptides and application in the Thermoanaerobacter tengcongensis phosphoproteome analysis]. Lin W; Wang J; Ying W; Qian X Se Pu; 2012 Aug; 30(8):763-9. PubMed ID: 23256377 [TBL] [Abstract][Full Text] [Related]
5. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Wang MC; Lee YH; Liao PC Anal Bioanal Chem; 2015 Feb; 407(5):1343-56. PubMed ID: 25486920 [TBL] [Abstract][Full Text] [Related]
6. A novel titanium dioxide-polydimethylsiloxane plate for phosphopeptide enrichment and mass spectrometry analysis. Chen CJ; Lai CC; Tseng MC; Liu YC; Liu YH; Chiou LW; Tsai FJ Anal Chim Acta; 2014 Feb; 812():105-13. PubMed ID: 24491770 [TBL] [Abstract][Full Text] [Related]
7. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Aryal UK; Ross AR Rapid Commun Mass Spectrom; 2010 Jan; 24(2):219-31. PubMed ID: 20014058 [TBL] [Abstract][Full Text] [Related]
8. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides. Thingholm TE; Larsen MR Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924 [TBL] [Abstract][Full Text] [Related]
10. Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides. Park SS; Maudsley S Anal Biochem; 2011 Feb; 409(1):81-8. PubMed ID: 20946866 [TBL] [Abstract][Full Text] [Related]
11. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry. Choi S; Kim J; Cho K; Park G; Yoon JH; Park S; Yoo JS; Ryu SH; Kim YH; Kim J Rapid Commun Mass Spectrom; 2010 May; 24(10):1467-74. PubMed ID: 20411586 [TBL] [Abstract][Full Text] [Related]
12. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics. Yu LR; Veenstra T Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Fe3O4/graphene/TiO2 composites for the highly selective enrichment of phosphopeptides from biological samples. Lu J; Deng C; Zhang X; Yang P ACS Appl Mater Interfaces; 2013 Aug; 5(15):7330-4. PubMed ID: 23883739 [TBL] [Abstract][Full Text] [Related]
14. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032 [TBL] [Abstract][Full Text] [Related]
15. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533 [TBL] [Abstract][Full Text] [Related]
16. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses. Gates MB; Tomer KB; Deterding LJ J Am Soc Mass Spectrom; 2010 Oct; 21(10):1649-59. PubMed ID: 20634090 [TBL] [Abstract][Full Text] [Related]
17. A new acid mix enhances phosphopeptide enrichment on titanium- and zirconium dioxide for mapping of phosphorylation sites on protein complexes. Mazanek M; Roitinger E; Hudecz O; Hutchins JR; Hegemann B; Mitulović G; Taus T; Stingl C; Peters JM; Mechtler K J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Feb; 878(5-6):515-24. PubMed ID: 20075017 [TBL] [Abstract][Full Text] [Related]
18. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
19. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Kweon HK; Håkansson K Anal Chem; 2006 Mar; 78(6):1743-9. PubMed ID: 16536406 [TBL] [Abstract][Full Text] [Related]
20. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]