BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 20557103)

  • 1. Conformational dynamics of neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2010 Jul; 114(27):8879-86. PubMed ID: 20557103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between planar grafted neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2011 Jun; 115(23):7541-9. PubMed ID: 21598932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture.
    Chang R; Kwak Y; Gebremichael Y
    J Mol Biol; 2009 Aug; 391(3):648-60. PubMed ID: 19559031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks.
    Beck R; Deek J; Safinya CR
    Biochem Soc Trans; 2012 Oct; 40(5):1027-31. PubMed ID: 22988859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A self-consistent field analysis of the neurofilament brush with amino-acid resolution.
    Zhulina EB; Leermakers FA
    Biophys J; 2007 Sep; 93(5):1421-30. PubMed ID: 17513356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models.
    Kumar S; Yin X; Trapp BD; Hoh JH; Paulaitis ME
    Biophys J; 2002 May; 82(5):2360-72. PubMed ID: 11964226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular structure of reassembled neurofilaments as revealed by the quick-freeze deep-etch mica method: difference between NF-M and NF-H subunits in their ability to form cross-bridges.
    Gotow T; Takeda M; Tanaka T; Hashimoto PH
    Eur J Cell Biol; 1992 Aug; 58(2):331-45. PubMed ID: 1425770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes.
    Jayanthi L; Stevenson W; Kwak Y; Chang R; Gebremichael Y
    J Biol Phys; 2013 Jun; 39(3):343-62. PubMed ID: 23860913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of mammalian high-molecular-weight neurofilament subunit phosphorylation in cultured rat sympathetic neurons.
    Clark EA; Lee VM
    J Neurosci Res; 1991 Sep; 30(1):116-23. PubMed ID: 1795396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A; Nixon RA; Rao MV
    Neurosci Lett; 2006 Jan; 393(2-3):264-8. PubMed ID: 16266786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression changes of neurofilament subunits in the central nervous system of hens treated with tri-ortho-cresyl phosphate (TOCP).
    Zhao XL; Zhang TL; Zhang CL; Han XY; Yu SF; Li SX; Cui N; Xie KQ
    Toxicology; 2006 Jun; 223(1-2):127-35. PubMed ID: 16697097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure.
    Kim S; Chang R; Teunissen C; Gebremichael Y; Petzold A
    J Neurol Sci; 2011 Aug; 307(1-2):132-8. PubMed ID: 21601889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective accumulation of the high molecular weight neurofilament subunit within the distal region of growing axonal neurites.
    Yabe JT; Wang FS; Chylinski T; Katchmar T; Shea TB
    Cell Motil Cytoskeleton; 2001 Sep; 50(1):1-12. PubMed ID: 11746668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurofilaments in health and disease.
    Gotow T
    Med Electron Microsc; 2000; 33(4):173-99. PubMed ID: 11810476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of repulsive forces between neurofilaments by sidearm phosphorylation.
    Kumar S; Hoh JH
    Biochem Biophys Res Commun; 2004 Nov; 324(2):489-96. PubMed ID: 15474454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation.
    Lee J; Kim S; Chang R; Jayanthi L; Gebremichael Y
    J Chem Phys; 2013 Jan; 138(1):015103. PubMed ID: 23298063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling between hydration layer dynamics and unfolding kinetics of HP-36.
    Bandyopadhyay S; Chakraborty S; Bagchi B
    J Chem Phys; 2006 Aug; 125(8):084912. PubMed ID: 16965062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.