These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20557282)

  • 21. Age and genetic strain differences in response to chronic methylphenidate administration.
    Yang PB; Cuellar DO; Swann AC; Dafny N
    Behav Brain Res; 2011 Mar; 218(1):206-17. PubMed ID: 21111006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locus coeruleus neuronal activity correlates with behavioral response to acute and chronic doses of methylphenidate (Ritalin) in adolescent rats.
    Kharas N; Reyes-Vazquez C; Dafny N
    J Neural Transm (Vienna); 2017 Oct; 124(10):1239-1250. PubMed ID: 28730316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sex differences in the behavioral response to methylphenidate in three adolescent rat strains (WKY, SHR, SD).
    Chelaru MI; Yang PB; Dafny N
    Behav Brain Res; 2012 Jan; 226(1):8-17. PubMed ID: 21889544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bilateral six-hydroxydopamine administration to PFC prevents the expression of behavioral sensitization to methylphenidate.
    Wanchoo SJ; Lee MJ; Swann AC; Dafny N
    Brain Res; 2010 Feb; 1312():89-100. PubMed ID: 19932692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Caudate neuronal recording in freely behaving animals following acute and chronic dose response methylphenidate exposure.
    Claussen CM; Dafny N
    Pharmacol Biochem Behav; 2015 Sep; 136():21-30. PubMed ID: 26101057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic administration of methylphenidate produces neurophysiological and behavioral sensitization.
    Yang PB; Swann AC; Dafny N
    Brain Res; 2007 May; 1145():66-80. PubMed ID: 17335781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caudate nucleus neurons participate in methylphenidate function: Behavioral and neuronal recordings from freely behaving adolescent rats.
    Karim TJ; Aksel C; Kharas N; Reyes-Vasquez C; Dafny N
    Brain Res Bull; 2018 Sep; 142():241-252. PubMed ID: 30016725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adolescent rats respond differently to methylphenidate as compared to adult rats- concomitant VTA neuronal and behavioral Recordings.
    Medina AC; Reyes-Vasquez C; Kharas N; Dafny N
    Brain Res Bull; 2022 Jun; 183():1-12. PubMed ID: 35202752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure.
    Venkataraman S; Claussen C; Dafny N
    J Neural Transm (Vienna); 2017 Feb; 124(2):159-170. PubMed ID: 27853928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Descending glutamatergic pathways of PFC are involved in acute and chronic action of methylphenidate.
    Wanchoo SJ; Swann AC; Dafny N
    Brain Res; 2009 Dec; 1301():68-79. PubMed ID: 19747456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute and chronic dose-response effect of methylphenidate on ventral tegmental area neurons correlated with animal behavior.
    Jones Z; Dafny N
    J Neural Transm (Vienna); 2014; 121(3):327-45. PubMed ID: 24249696
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate.
    Frolov A; Reyes-Vasquez C; Dafny N
    J Neurophysiol; 2015 Jan; 113(1):369-79. PubMed ID: 25318764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutaminergic signaling in the caudate nucleus is required for behavioral sensitization to methylphenidate.
    King N; Floren S; Kharas N; Thomas M; Dafny N
    Pharmacol Biochem Behav; 2019 Sep; 184():172737. PubMed ID: 31228508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methylphenidate: diurnal effects on locomotor and stereotypic behavior in the rat.
    Gaytan O; Ghelani D; Martin S; Swann A; Dafny N
    Brain Res; 1997 Nov; 777(1-2):1-12. PubMed ID: 9449407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of clinically relevant doses of methyphenidate on spatial memory, behavioral sensitization and open field habituation: a time related study.
    Haleem DJ; Inam QU; Haleem MA
    Behav Brain Res; 2015 Mar; 281():208-14. PubMed ID: 25532915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methylphenidate dose-response behavioral and neurophysiological study of the ventral tegmental area and nucleus accumbens in adolescent rats.
    Broussard E; Reyes-Vazquez C; Dafny N
    Eur J Neurosci; 2019 Aug; 50(4):2635-2652. PubMed ID: 30866123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of the neuronal nitric oxide synthase inhibitor 7-nitroindazole on methylphenidate-induced hyperlocomotion in mice.
    Itzhak Y; Martin JL
    Behav Pharmacol; 2002 Feb; 13(1):81-6. PubMed ID: 11990722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of age, genotype, sex, and route of acute and chronic administration of methylphenidate: a review of its locomotor effects.
    Dafny N; Yang PB
    Brain Res Bull; 2006 Feb; 68(6):393-405. PubMed ID: 16459193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleus accumbens neuronal activity correlates to the animal's behavioral response to acute and chronic methylphenidate.
    Claussen CM; Chong SL; Dafny N
    Physiol Behav; 2014 Apr; 129():85-94. PubMed ID: 24534179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Desensitization of 5-HT-1A Somatodentritic Receptors in Tryptophan Treated and Co-treated Rats Induced by Methylphenidate.
    Farhan M; Riaz F; Wali S; Rafiq H
    Curr Clin Pharmacol; 2019; 14(2):125-131. PubMed ID: 30417792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.