BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20557293)

  • 1. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690.
    Zhou XL; Tan M; Wang M; Chen X; Wang ED
    Biochem J; 2010 Sep; 430(2):325-33. PubMed ID: 20557293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of
    Tandon S; Manhas R; Tiwari N; Munde M; Vijayan R; Gourinath S; Muthuswami R; Madhubala R
    J Biosci; 2020; 45():. PubMed ID: 32385222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase.
    Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED
    Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles.
    Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S
    J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site.
    Rock FL; Mao W; Yaremchuk A; Tukalo M; Crépin T; Zhou H; Zhang YK; Hernandez V; Akama T; Baker SJ; Plattner JJ; Shapiro L; Martinis SA; Benkovic SJ; Cusack S; Alley MR
    Science; 2007 Jun; 316(5832):1759-61. PubMed ID: 17588934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing.
    Zhou XL; Wang ED
    Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism.
    Zhao H; Palencia A; Seiradake E; Ghaemi Z; Cusack S; Luthey-Schulten Z; Martinis S
    ACS Chem Biol; 2015 Oct; 10(10):2277-85. PubMed ID: 26172575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral insertion modulates the editing activity of the isolated CP1 domain of leucyl-tRNA synthetase.
    Liu RJ; Tan M; Du DH; Xu BS; Eriani G; Wang ED
    Biochem J; 2011 Dec; 440(2):217-27. PubMed ID: 21819379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity.
    Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED
    Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.
    Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED
    J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing.
    Zhou XL; Zhu B; Wang ED
    J Biol Chem; 2008 Dec; 283(52):36608-16. PubMed ID: 18955487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain.
    Lee KW; Briggs JM
    Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity.
    Huang Q; Zhou XL; Hu QH; Lei HY; Fang ZP; Yao P; Wang ED
    RNA; 2014 Sep; 20(9):1440-50. PubMed ID: 25051973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of benzoxaborole-based antifungal resistance mutations demonstrates that editing depends on electrostatic stabilization of the leucyl-tRNA synthetase editing cap.
    Sarkar J; Mao W; Lincecum TL; Alley MR; Martinis SA
    FEBS Lett; 2011 Oct; 585(19):2986-91. PubMed ID: 21856301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity.
    Betha AK; Williams AM; Martinis SA
    Biochemistry; 2007 May; 46(21):6258-67. PubMed ID: 17474713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation.
    Lue SW; Kelley SO
    Biochemistry; 2007 Apr; 46(15):4466-72. PubMed ID: 17378584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A paradigm shift for the amino acid editing mechanism of human cytoplasmic leucyl-tRNA synthetase.
    Pang YL; Martinis SA
    Biochemistry; 2009 Sep; 48(38):8958-64. PubMed ID: 19702327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices.
    Xu MG; Zhao MW; Wang ED
    J Biol Chem; 2004 Jul; 279(31):32151-8. PubMed ID: 15161932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.