These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 20557293)
1. Post-transfer editing by a eukaryotic leucyl-tRNA synthetase resistant to the broad-spectrum drug AN2690. Zhou XL; Tan M; Wang M; Chen X; Wang ED Biochem J; 2010 Sep; 430(2):325-33. PubMed ID: 20557293 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the interaction of benzoxaborole inhibitor AN2690 with connective polypeptide 1 (CP1) editing domain of Tandon S; Manhas R; Tiwari N; Munde M; Vijayan R; Gourinath S; Muthuswami R; Madhubala R J Biosci; 2020; 45():. PubMed ID: 32385222 [TBL] [Abstract][Full Text] [Related]
3. A unique insertion in the CP1 domain of Giardia lamblia leucyl-tRNA synthetase. Zhou XL; Yao P; Ruan LL; Zhu B; Luo J; Qu LH; Wang ED Biochemistry; 2009 Feb; 48(6):1340-7. PubMed ID: 19170608 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles. Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743 [TBL] [Abstract][Full Text] [Related]
6. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing. Zhou XL; Wang ED Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism. Zhao H; Palencia A; Seiradake E; Ghaemi Z; Cusack S; Luthey-Schulten Z; Martinis S ACS Chem Biol; 2015 Oct; 10(10):2277-85. PubMed ID: 26172575 [TBL] [Abstract][Full Text] [Related]
8. Peripheral insertion modulates the editing activity of the isolated CP1 domain of leucyl-tRNA synthetase. Liu RJ; Tan M; Du DH; Xu BS; Eriani G; Wang ED Biochem J; 2011 Dec; 440(2):217-27. PubMed ID: 21819379 [TBL] [Abstract][Full Text] [Related]
9. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity. Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813 [TBL] [Abstract][Full Text] [Related]
10. Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase. Ye Q; Wang M; Fang ZP; Ruan ZR; Ji QQ; Zhou XL; Wang ED J Biol Chem; 2015 Oct; 290(40):24391-402. PubMed ID: 26272616 [TBL] [Abstract][Full Text] [Related]
11. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing. Zhou XL; Zhu B; Wang ED J Biol Chem; 2008 Dec; 283(52):36608-16. PubMed ID: 18955487 [TBL] [Abstract][Full Text] [Related]
12. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
13. A bridge between the aminoacylation and editing domains of leucyl-tRNA synthetase is crucial for its synthetic activity. Huang Q; Zhou XL; Hu QH; Lei HY; Fang ZP; Yao P; Wang ED RNA; 2014 Sep; 20(9):1440-50. PubMed ID: 25051973 [TBL] [Abstract][Full Text] [Related]
14. Characterization of benzoxaborole-based antifungal resistance mutations demonstrates that editing depends on electrostatic stabilization of the leucyl-tRNA synthetase editing cap. Sarkar J; Mao W; Lincecum TL; Alley MR; Martinis SA FEBS Lett; 2011 Oct; 585(19):2986-91. PubMed ID: 21856301 [TBL] [Abstract][Full Text] [Related]
15. Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity. Betha AK; Williams AM; Martinis SA Biochemistry; 2007 May; 46(21):6258-67. PubMed ID: 17474713 [TBL] [Abstract][Full Text] [Related]
16. A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation. Lue SW; Kelley SO Biochemistry; 2007 Apr; 46(15):4466-72. PubMed ID: 17378584 [TBL] [Abstract][Full Text] [Related]
17. A paradigm shift for the amino acid editing mechanism of human cytoplasmic leucyl-tRNA synthetase. Pang YL; Martinis SA Biochemistry; 2009 Sep; 48(38):8958-64. PubMed ID: 19702327 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. Fukunaga R; Yokoyama S J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927 [TBL] [Abstract][Full Text] [Related]
19. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices. Xu MG; Zhao MW; Wang ED J Biol Chem; 2004 Jul; 279(31):32151-8. PubMed ID: 15161932 [TBL] [Abstract][Full Text] [Related]
20. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Fukunaga R; Yokoyama S Nat Struct Mol Biol; 2005 Oct; 12(10):915-22. PubMed ID: 16155584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]