These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 20557691)
1. Synthesis and Characterization of Shape Memory (Meth)Acrylate Co-Polymers and their Cytocompatibility In Vitro. Song L; Hu W; Wang G; Zhang H; Niu G; Cao H; Yang H; Zhu S J Biomater Sci Polym Ed; 2011; 22(1-3):1-17. PubMed ID: 20557691 [TBL] [Abstract][Full Text] [Related]
2. Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications. Song L; Hu W; Wang G; Niu G; Zhang H; Cao H; Wang K; Yang H; Zhu S Macromol Biosci; 2010 Oct; 10(10):1194-202. PubMed ID: 20625994 [TBL] [Abstract][Full Text] [Related]
3. In vitro evaluation of chemically cross-linked shape-memory acrylate-methacrylate copolymer networks as ocular implants. Song L; Hu W; Zhang H; Wang G; Yang H; Zhu S J Phys Chem B; 2010 Jun; 114(21):7172-8. PubMed ID: 20462221 [TBL] [Abstract][Full Text] [Related]
4. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917 [TBL] [Abstract][Full Text] [Related]
5. P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering. Villa C; Martello F; Erratico S; Tocchio A; Belicchi M; Lenardi C; Torrente Y J Tissue Eng Regen Med; 2017 Jan; 11(1):187-196. PubMed ID: 24799388 [TBL] [Abstract][Full Text] [Related]
6. Manipulating degradation time in a N-isopropylacrylamide-based co-polymer with hydrolysis-dependent LCST. Cui Z; Lee BH; Pauken C; Vernon BL J Biomater Sci Polym Ed; 2010; 21(6-7):913-26. PubMed ID: 20482992 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and biocompatibility of novel biodegradable cross-linked co-polymers based on poly(propylene oxide) diglycidylether and polyethylenimine. Ding Y; Wang J; Wong CS; Halley PJ; Guo Q J Biomater Sci Polym Ed; 2011; 22(4-6):457-73. PubMed ID: 20566040 [TBL] [Abstract][Full Text] [Related]
8. Study on the biocompatibility of novel terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). Liang YS; Zhao W; Chen GQ J Biomed Mater Res A; 2008 Nov; 87(2):441-9. PubMed ID: 18186048 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of poly(1,2-propanediol-co-1,8-octanediol-co-citrate) biodegradable elastomers for tissue engineering. Li J; Zheng W; Pan P; Sun X; Zhang Y Biomed Mater Eng; 2014; 24(1):619-24. PubMed ID: 24211946 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens. Nabais CR; Heron BM; de Sousa HC; Gil MH; Sobral AJ J Biomater Sci Polym Ed; 2011; 22(1-3):139-52. PubMed ID: 20546680 [TBL] [Abstract][Full Text] [Related]
11. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Kelch S; Steuer S; Schmidt AM; Lendlein A Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394 [TBL] [Abstract][Full Text] [Related]
12. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility. De Nardo L; Alberti R; Cigada A; Yahia L; Tanzi MC; Farè S Acta Biomater; 2009 Jun; 5(5):1508-18. PubMed ID: 19136318 [TBL] [Abstract][Full Text] [Related]
13. Design, synthesis, and preliminary characterization of tyrosine-containing polyarylates: new biomaterials for medical applications. Fiordeliso J; Bron S; Kohn J J Biomater Sci Polym Ed; 1994; 5(6):497-510. PubMed ID: 8086380 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, characterization, and biocompatibility of novel injectable, biodegradable, and in situ crosslinkable polycarbonate-based macromers. Sharifi S; Imani M; Mirzadeh H; Atai M; Ziaee F; Bakhshi R J Biomed Mater Res A; 2009 Sep; 90(3):830-43. PubMed ID: 18615464 [TBL] [Abstract][Full Text] [Related]
15. Melt-processable hydrophobic acrylonitrile-based copolymer systems with adjustable elastic properties designed for biomedical applications. Cui J; Trescher K; Kratz K; Jung F; Hiebl B; Lendlein A Clin Hemorheol Microcirc; 2010; 45(2-4):401-11. PubMed ID: 20675924 [TBL] [Abstract][Full Text] [Related]
16. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis. Yar M; Shahzad S; Siddiqi SA; Mahmood N; Rauf A; Anwar MS; Chaudhry AA; Rehman Iu Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():154-64. PubMed ID: 26249576 [TBL] [Abstract][Full Text] [Related]
17. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations. Bruining MJ; Blaauwgeers HG; Kuijer R; Jongsma FH; de Brabander J; Nuijts RM; Koole LH Biomacromolecules; 2000; 1(3):418-23. PubMed ID: 11710132 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG. Li G; Li P; Qiu H; Li D; Su M; Xu K J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829 [TBL] [Abstract][Full Text] [Related]
19. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids. Lecht S; Cohen-Arazi N; Cohen G; Ettinger K; Momic T; Kolitz M; Naamneh M; Katzhendler J; Domb AJ; Lazarovici P; Lelkes PI J Biomater Sci Polym Ed; 2014; 25(6):608-24. PubMed ID: 24568316 [TBL] [Abstract][Full Text] [Related]
20. Bioactive, mechanically favorable, and biodegradable copolymer nanocomposites for orthopedic applications. Victor SP; Muthu J Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():150-60. PubMed ID: 24863211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]