BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20557717)

  • 1. Thermal properties of freezing bound water restrained by polysaccharides.
    Hatakeyama T; Tanaka M; Hatakeyama H
    J Biomater Sci Polym Ed; 2010; 21(14):1865-75. PubMed ID: 20557717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on bound water restrained by poly(2-methacryloyloxyethyl phosphorylcholine): Comparison with polysaccharide-water systems.
    Hatakeyama T; Tanaka M; Hatakeyama H
    Acta Biomater; 2010 Jun; 6(6):2077-82. PubMed ID: 20005309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat capacity and nuclear magnetic relaxation times of non-freezing water restrained by polysaccharides, revisited.
    Hatakeyama T; Hatakeyama H
    J Biomater Sci Polym Ed; 2017; 28(10-12):1215-1230. PubMed ID: 28277008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clarification of the blood compatibility mechanism by controlling the water structure at the blood-poly(meth)acrylate interface.
    Tanaka M; Mochizuki A
    J Biomater Sci Polym Ed; 2010; 21(14):1849-63. PubMed ID: 20699056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water structure and blood compatibility of poly(tetrahydrofurfuryl acrylate).
    Mochizuki A; Hatakeyama T; Tomono Y; Tanaka M
    J Biomater Sci Polym Ed; 2009; 20(5-6):591-603. PubMed ID: 19323878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of novel biointerfaces (I). Blood compatibility of poly(2-methoxyethyl acrylate).
    Tanaka M
    Biomed Mater Eng; 2004; 14(4):427-38. PubMed ID: 15472391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration structure of poly(2-methoxyethyl acrylate): comparison with a 2-methoxyethyl acetate model monomer.
    Morita S; Tanaka M; Kitagawa K; Ozaki Y
    J Biomater Sci Polym Ed; 2010; 21(14):1925-35. PubMed ID: 20566058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of water structure on blood compatibility--thermal analysis of water in poly(meth)acrylate.
    Tanaka M; Mochizuki A
    J Biomed Mater Res A; 2004 Mar; 68(4):684-95. PubMed ID: 14986323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enthalpy relaxation of freeze concentrated sucrose-water glass.
    Inoue C; Suzuki T
    Cryobiology; 2006 Feb; 52(1):83-9. PubMed ID: 16321366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ²H-NMR and ¹³C-NMR study of the hydration behavior of poly(2-methoxyethyl acrylate), poly(2-hydroxyethyl methacrylate) and poly(tetrahydrofurfuryl acrylate) in relation to their blood compatibility as biomaterials.
    Miwa Y; Ishida H; Tanaka M; Mochizuki A
    J Biomater Sci Polym Ed; 2010; 21(14):1911-24. PubMed ID: 20573319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of water molecules in the interface between biological systems and polymers.
    Tsuruta T
    J Biomater Sci Polym Ed; 2010; 21(14):1831-48. PubMed ID: 20573318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels.
    Faroongsarng D; Sukonrat P
    Int J Pharm; 2008 Mar; 352(1-2):152-8. PubMed ID: 18061379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41.
    Kittaka S; Sou K; Yamaguchi T; Tozaki K
    Phys Chem Chem Phys; 2009 Oct; 11(38):8538-43. PubMed ID: 19774285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection.
    Volk GM; Walters C
    Cryobiology; 2006 Feb; 52(1):48-61. PubMed ID: 16321367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Thermostability of DNA and its connection with the glassing process].
    Vaveliuk OL; Tsereteli GI; Belopol'skaia TV
    Tsitologiia; 1999; 41(11):958-65. PubMed ID: 10643052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On phase transitions in the water-ethylene glycol system at subzero temperatures under non-isothermal conditions.
    Zinchenko AV; Zinchenko VD
    Cryo Letters; 2001; 22(3):191-8. PubMed ID: 11788859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal properties of ration components as affected by moisture content and water activity during freezing.
    Li J; Chinachoti P; Wang D; Hallberg LM; Sun XS
    J Food Sci; 2008 Nov; 73(9):E425-30. PubMed ID: 19021797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The question of high- or low-temperature glass transition in frozen fish. Construction of the supplemented state diagram for tuna muscle by differential scanning calorimetry.
    Orlien V; Risbo J; Andersen ML; Skibsted LH
    J Agric Food Chem; 2003 Jan; 51(1):211-7. PubMed ID: 12502410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Thermal properties of collagen-water system. 1. Increments of heat capacity during denaturation and glass transition].
    Tsereteli GI; Belopol'skaia TV; Mel'nik TN
    Biofizika; 1997; 42(1):68-74. PubMed ID: 9181803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.