These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2055826)
21. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373 [TBL] [Abstract][Full Text] [Related]
22. A malonyl-CoA fuel-sensing mechanism in muscle: effects of insulin, glucose, and denervation. Saha AK; Kurowski TG; Ruderman NB Am J Physiol; 1995 Aug; 269(2 Pt 1):E283-9. PubMed ID: 7653546 [TBL] [Abstract][Full Text] [Related]
23. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle. Bezaire V; Heigenhauser GJ; Spriet LL Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596 [TBL] [Abstract][Full Text] [Related]
24. Impact of protein restriction on the regulation of cardiac carnitine palmitoyltransferase by malonyl-CoA. Holness MJ; Priestman DA; Sugden MC J Mol Cell Cardiol; 1998 Jul; 30(7):1381-90. PubMed ID: 9710806 [TBL] [Abstract][Full Text] [Related]
25. Insulin resistance in type 2 diabetes: association with truncal obesity, impaired fitness, and atypical malonyl coenzyme A regulation. BĂ„venholm PN; Kuhl J; Pigon J; Saha AK; Ruderman NB; Efendic S J Clin Endocrinol Metab; 2003 Jan; 88(1):82-7. PubMed ID: 12519834 [TBL] [Abstract][Full Text] [Related]
26. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle. Kim JY; Koves TR; Yu GS; Gulick T; Cortright RN; Dohm GL; Muoio DM Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1014-22. PubMed ID: 11934665 [TBL] [Abstract][Full Text] [Related]
27. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064 [TBL] [Abstract][Full Text] [Related]
28. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889 [TBL] [Abstract][Full Text] [Related]
29. Malonyl CoA, long chain fatty acyl CoA and insulin resistance in skeletal muscle. Ruderman NB; Dean D J Basic Clin Physiol Pharmacol; 1998; 9(2-4):295-308. PubMed ID: 10212840 [TBL] [Abstract][Full Text] [Related]
30. Hyperthyroidism facilitates cardiac fatty acid oxidation through altered regulation of cardiac carnitine palmitoyltransferase: studies in vivo and with cardiac myocytes. Sugden MC; Priestman DA; Orfali KA; Holness MJ Horm Metab Res; 1999 May; 31(5):300-6. PubMed ID: 10422724 [TBL] [Abstract][Full Text] [Related]
31. Malonyl-CoA--regulator of fatty acid oxidation in muscle during exercise. Winder WW Exerc Sport Sci Rev; 1998; 26():117-32. PubMed ID: 9696987 [TBL] [Abstract][Full Text] [Related]
32. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Kuhl JE; Ruderman NB; Musi N; Goodyear LJ; Patti ME; Crunkhorn S; Dronamraju D; Thorell A; Nygren J; Ljungkvist O; Degerblad M; Stahle A; Brismar TB; Andersen KL; Saha AK; Efendic S; Bavenholm PN Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1296-303. PubMed ID: 16434556 [TBL] [Abstract][Full Text] [Related]
33. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454 [TBL] [Abstract][Full Text] [Related]
34. Effects of high fat provision on muscle PDH activation and malonyl-CoA content in moderate exercise. Odland LM; Heigenhauser GJ; Spriet LL J Appl Physiol (1985); 2000 Dec; 89(6):2352-8. PubMed ID: 11090589 [TBL] [Abstract][Full Text] [Related]
35. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. Odland LM; Howlett RA; Heigenhauser GJ; Hultman E; Spriet LL Am J Physiol; 1998 Jun; 274(6):E1080-5. PubMed ID: 9611159 [TBL] [Abstract][Full Text] [Related]
36. Effects of thyroid state and fasting on the concentrations of CoA and malonyl-CoA in rat liver. Lund H; Stakkestad JA; Skrede S Biochim Biophys Acta; 1986 May; 876(3):685-7. PubMed ID: 3707992 [TBL] [Abstract][Full Text] [Related]
37. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Awan MM; Saggerson ED Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):61-6. PubMed ID: 8216240 [TBL] [Abstract][Full Text] [Related]
38. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012 [TBL] [Abstract][Full Text] [Related]
39. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. Saha AK; Laybutt DR; Dean D; Vavvas D; Sebokova E; Ellis B; Klimes I; Kraegen EW; Shafrir E; Ruderman NB Am J Physiol; 1999 Jun; 276(6):E1030-7. PubMed ID: 10362615 [TBL] [Abstract][Full Text] [Related]
40. Altered hepatic fatty acid metabolism in endotoxicosis: effect of L-carnitine on survival. Takeyama N; Takagi D; Matsuo N; Kitazawa Y; Tanaka T Am J Physiol; 1989 Jan; 256(1 Pt 1):E31-8. PubMed ID: 2521428 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]