BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2055843)

  • 1. Vagal control of central and peripheral pulmonary resistance in developing piglets.
    Pérez Fontán JJ; Ray AO
    J Appl Physiol (1985); 1991 Apr; 70(4):1617-26. PubMed ID: 2055843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of bronchomotor tone during perinatal development in sheep.
    Pérez Fontán JJ; Kinloch LP
    J Appl Physiol (1985); 1993 Oct; 75(4):1486-96. PubMed ID: 7904265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous nitric oxide modulates responses of tissue and airway resistance to vagal stimulation in piglets.
    Khassawneh MY; Dreshaj IA; Liu S; Chang CH; Haxhiu MA; Martin RJ
    J Appl Physiol (1985); 2002 Aug; 93(2):450-6. PubMed ID: 12133849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vagal cholinergic innervation of the airways in newborn cat and dog.
    Fisher JT; Brundage KL; Waldron MA; Connelly BJ
    J Appl Physiol (1985); 1990 Oct; 69(4):1525-31. PubMed ID: 2262476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vagal reflex is not responsible for changes in airway and lung tissue mechanics due to vascular engorgement in young piglets.
    Uhlig T; Wildhaber JH; Eber E; Sly PD
    Pediatr Res; 1997 Oct; 42(4):533-8. PubMed ID: 9380449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sympathetic and parasympathetic nervous control of airway resistance in dog lungs.
    Inoue H; Ishii M; Fuyuki T; Inoue C; Matsumoto N; Sasaki H; Takishima T
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jun; 54(6):1496-504. PubMed ID: 6874471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of central and peripheral airway resistance to lung volume in dogs.
    Hoppin FG; Green M; Morgan MS
    J Appl Physiol Respir Environ Exerc Physiol; 1978 May; 44(5):728-37. PubMed ID: 649475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vagal influence on respiratory mechanics in newborn kittens.
    Rossi A; Mortola JP
    Bull Eur Physiopathol Respir; 1987; 23(1):61-6. PubMed ID: 3593996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of CO2 and hypoxia on bronchomotor tone in the newborn dog.
    Waldron MA; Fisher JT
    Respir Physiol; 1988 Jun; 72(3):271-82. PubMed ID: 3136522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maturational changes in responses of tissue and airway resistance to histamine.
    Dreshaj IA; Haxhiu MA; Potter CF; Agani FH; Martin RJ
    J Appl Physiol (1985); 1996 Oct; 81(4):1785-91. PubMed ID: 8904600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of bilateral vagotomy on the physostigmine-induced airway constriction in ferrets.
    Neziri B; Daci A; Krasniqi S; Sopi R; Haxhiu MA
    Respir Physiol Neurobiol; 2017 Aug; 242():102-107. PubMed ID: 28445778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of vagal tone on airway diameters and on lung volume in anesthetized dogs.
    Hahn HL; Graf PD; Nadel JA
    J Appl Physiol; 1976 Oct; 41(4):581-9. PubMed ID: 985405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of vagotomy, vagal cooling and efferent vagal stimulation on breathing and lung mechanics of rabbits.
    Karczewski W; Widdicombe JG
    J Physiol; 1969 Apr; 201(2):259-70. PubMed ID: 5780543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced oscillatory parameters of the canine respiratory system with altered vagal tone.
    Pimmel RL; Winter DC; Bromberg PA
    IEEE Trans Biomed Eng; 1980 Mar; 27(3):146-9. PubMed ID: 7358416
    [No Abstract]   [Full Text] [Related]  

  • 15. Frequency dependence and partitioning of respiratory impedance in dogs.
    Kappos AD; Rodarte JR; Lai-Fook SJ
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):621-9. PubMed ID: 7327963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of genioglossal muscle activity in the anesthetized piglet: the role of vagal afferents.
    Watchko JF; O'Day TL; Brozanski BS; Vazquez RL; Guthrie RD
    Biol Neonate; 1992; 61(6):366-73. PubMed ID: 1525270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of exogenous and endogenous nitric oxide on the airway and tissue components of lung resistance in the newborn piglet.
    Potter CF; Dreshaj IA; Haxhiu MA; Stork EK; Chatburn RL; Martin RJ
    Pediatr Res; 1997 Jun; 41(6):886-91. PubMed ID: 9167203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vagally mediated volume-dependent modulation of inspiratory duration in the neonatal lamb.
    Webb B; Hutchison AA; Davenport PW
    J Appl Physiol (1985); 1994 Jan; 76(1):397-402. PubMed ID: 8175536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hemodynamic edema formation on peripheral vs. central airway mechanics.
    Ishii M; Matsumoto N; Fuyuki T; Hida W; Ichinose M; Inoue H; Takishima T
    J Appl Physiol (1985); 1985 Nov; 59(5):1578-84. PubMed ID: 4066589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal stimulation and aerosol histamine increase hysteresis of lung recoil.
    Loring SH; Drazen JM; Smith JC; Hoppin FG
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Aug; 51(2):477-84. PubMed ID: 7263454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.