BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20558743)

  • 1. Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system.
    Drechsel DA; Patel M
    J Biol Chem; 2010 Sep; 285(36):27850-8. PubMed ID: 20558743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system.
    Lopert P; Patel M
    J Biol Chem; 2014 May; 289(22):15611-20. PubMed ID: 24722990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption.
    Lopert P; Patel M
    Redox Biol; 2014; 2():667-72. PubMed ID: 24936441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.
    Lopert P; Day BJ; Patel M
    PLoS One; 2012; 7(11):e50683. PubMed ID: 23226354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of thioredoxin-2 reductase and glutathione peroxidase to H(2)O(2) detoxification of rat brain mitochondria.
    Kudin AP; Augustynek B; Lehmann AK; Kovács R; Kunz WS
    Biochim Biophys Acta; 2012 Oct; 1817(10):1901-6. PubMed ID: 22398128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thioredoxin and glutathione-dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays.
    Munro D; Banh S; Sotiri E; Tamanna N; Treberg JR
    Free Radic Biol Med; 2016 Jul; 96():334-46. PubMed ID: 27101737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pancreatic β-cells detoxify H
    Stancill JS; Broniowska KA; Oleson BJ; Naatz A; Corbett JA
    J Biol Chem; 2019 Mar; 294(13):4843-4853. PubMed ID: 30659092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of brain mitochondrial respiration by dopamine: involvement of H(2)O(2) and hydroxyl radicals but not glutathione-protein-mixed disulfides.
    Gluck M; Ehrhart J; Jayatilleke E; Zeevalk GD
    J Neurochem; 2002 Jul; 82(1):66-74. PubMed ID: 12091466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study.
    Aon MA; Stanley BA; Sivakumaran V; Kembro JM; O'Rourke B; Paolocci N; Cortassa S
    J Gen Physiol; 2012 Jun; 139(6):479-91. PubMed ID: 22585969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alcohol induces mitochondrial redox imbalance in alveolar macrophages.
    Liang Y; Harris FL; Jones DP; Brown LAS
    Free Radic Biol Med; 2013 Dec; 65():1427-1434. PubMed ID: 24140864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State.
    Folda A; Citta A; Scalcon V; Calì T; Zonta F; Scutari G; Bindoli A; Rigobello MP
    Sci Rep; 2016 Mar; 6():23071. PubMed ID: 26975474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin reductase-2 is essential for keeping low levels of H(2)O(2) emission from isolated heart mitochondria.
    Stanley BA; Sivakumaran V; Shi S; McDonald I; Lloyd D; Watson WH; Aon MA; Paolocci N
    J Biol Chem; 2011 Sep; 286(38):33669-77. PubMed ID: 21832082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic characterization of the thioredoxin system in the removal of hydrogen peroxide.
    Pannala VR; Dash RK
    Free Radic Biol Med; 2015 Jan; 78():42-55. PubMed ID: 25451645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system.
    Roede JR; Hansen JM; Go YM; Jones DP
    Toxicol Sci; 2011 Jun; 121(2):368-75. PubMed ID: 21402726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells.
    Myers CR; Myers JM
    Toxicology; 2009 Mar; 257(1-2):95-104. PubMed ID: 19135121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of reductase systems by 2-AAPA modulates peroxiredoxin oxidation and mitochondrial function in A172 glioblastoma cells.
    de Souza LF; Schmitz AE; da Silva LCS; de Oliveira KA; Nedel CB; Tasca CI; de Bem AF; Farina M; Dafre AL
    Toxicol In Vitro; 2017 Aug; 42():273-280. PubMed ID: 28461233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain.
    Castello PR; Drechsel DA; Patel M
    J Biol Chem; 2007 May; 282(19):14186-93. PubMed ID: 17389593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin.
    Brown KK; Cox AG; Hampton MB
    FEBS Lett; 2010 Mar; 584(6):1257-62. PubMed ID: 20176019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.