These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2055911)

  • 1. Analysis of a new polycentric above-knee prosthesis with a pneumatic swing phase control.
    Patil KM; Chakraborty JK
    J Biomech; 1991; 24(3-4):223-33. PubMed ID: 2055911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new modular six-bar linkage trans-femoral prosthesis for walking and squatting.
    Chakraborty JK; Patil KM
    Prosthet Orthot Int; 1994 Aug; 18(2):98-108. PubMed ID: 7991367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Relative Contributions of Active Ankle and Knee Assistance to the Walking Mechanics of Transfemoral Amputees Using a Powered Prosthesis.
    Ingraham KA; Fey NP; Simon AM; Hargrove LJ
    PLoS One; 2016; 11(1):e0147661. PubMed ID: 26807889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control.
    Boonstra AM; Schrama J; Fidler V; Eisma WH
    Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The University of California Biomechanics Laboratory four-bar polycentric knee linkage. A clinical trial in 20 active above-knee amputees.
    Jergesen HE; Hoaglund FT; Roberts RA; Wilson LA; Lamoreux LW; Radcliffe CW
    Clin Orthop Relat Res; 1986 Mar; (204):184-92. PubMed ID: 3956009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance assessment of the Terry Fox jogging prosthesis for above-knee amputees.
    DiAngelo DJ; Winter DA; Ghista DN; Newcombe WR
    J Biomech; 1989; 22(6-7):543-58. PubMed ID: 2808440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knee mechanisms for through-knee prostheses.
    Oberg K
    Prosthet Orthot Int; 1983 Aug; 7(2):107-12. PubMed ID: 6622228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design optimization of an above-knee prosthesis based on the kinematics of gait.
    Pejhan S; Farahmand F; Parnianpour M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4274-7. PubMed ID: 19163657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical conceptual design of a passive transfemoral prosthesis.
    Unal R; Carloni R; Hekman EG; Stramigioli S; Koopman HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():515-8. PubMed ID: 21095657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ankle-knee synchronous knee lock mechanism: a revision.
    Lee W
    Arch Phys Med Rehabil; 1982 Aug; 63(8):392-3. PubMed ID: 7115035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles.
    Mendez J; Hood S; Gunnel A; Lenzi T
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ankle-knee synchronous in a new endoskeletal above-knee prosthetic mechanism: a preliminary report.
    Li WK
    Arch Phys Med Rehabil; 1976 Oct; 57(10):479-81. PubMed ID: 973790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved above-knee prosthesis with functional versatility.
    Chaudhry KK; Guha SK; Verma SK
    Prosthet Orthot Int; 1982 Dec; 6(3):157-60. PubMed ID: 7155812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards optimal toe-clearance in synthesizing polycentric prosthetic knee mechanism.
    Marisami P; Venkatachalam R
    Comput Methods Biomech Biomed Engin; 2022 May; 25(6):656-667. PubMed ID: 34544295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal human locomotion.
    Hughes J; Jacobs N
    Prosthet Orthot Int; 1979 Apr; 3(1):4-12. PubMed ID: 471705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foot posture and function have only minor effects on knee function during barefoot walking in healthy individuals.
    Buldt AK; Levinger P; Murley GS; Menz HB; Nester CJ; Landorf KB
    Clin Biomech (Bristol, Avon); 2015 Jun; 30(5):431-7. PubMed ID: 25843480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.